
New Estimation and Inference Procedures for

a Single-Index Conditional Distribution Model

We consider the conditional distribution FY (y|x) of a real-valued re-

sponse Y given continuous covariates X = x, where X = (X1, · · · , Xd)
T and

x = (x1, · · · , xd)T . In regression analysis, a wide cross-section of research

interests is pursued in the study of the conditional mean E[Y |x]. A more

complete methodology and theoretical framework related to fully nonpara-

metric and semiparametric distribution models still remains and a further

investigation is necessary. As one can see, with a large number of covari-

atess, a fully nonparametric distribution usually suffers from the curse of

dimensionality (Bellman (1961)). Although parametric models have played

prominent roles in applications, they are frequently detected to be inade-

quate in many studies. Consequently, a more flexible semiparametric model

becomes a great interest to characterize the dependence of Y on X and avoids

the impact of misspecification of parametric models and the difficulty in the

estimation of nonparametric distributions.

One of the most popular extension of parametric models is the single-
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index (SI) conditional distribution model:

FY (y|x) = G(y, xθ0), (1)

where G(·, ·) is an unknown bivariate function, xθ = x1 + (x2, · · · , xd)T θ,

and θ0 is a vector of true index coefficients. The most significant covari-

ate is assumed, without loss of generality, to be X1 and the setting of its

coefficient is mainly to deal with the problem of identifiability. When the

conditional mean exists, it can be easily obtained from the above model that

E[Y |x] = m(xθ0) with m(·) being some unspecified function. Based on the

conditional mean model, Powell, Stock, and Stoker (1989) utilized the esti-

mation of the density-weighted average derivative to estimate θ0. Although

the estimator was shown to be
√
n-consistent, asymptotically normal, and

computationally simple, the numerical instability is usually seen as a conse-

quence of high-dimensional kernel smoothing. To overcome such a weakness

with practice, Ichimura (1993) developed a semiparametric least squares ap-

proach and derived its asymptotic properties. Meanwhile, Härdle, Hall, and

Ichimura (1993) recommended a cross-validation criterion to simultaneously

estimate bandwidths and index coefficients. Under the validity of model (1)

with a continuous response, Delecroix, Härdle, and Hristache (2003) intro-

duced the pseudo likelihood (PL) estimation for θ0. Without moment and

continuous conditions on Y , Hall and Yao (2005) suggested an estimation

criterion on the basis of the average squared difference between the empirical

estimator and the model-based estimator of the joint probability of (Y,XT )T .

As one can see, the good performance of their estimation procedure is con-
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nected to an appropriate number of spheres and the corresponding radii used

in the integral approximation. Currently, there is still no standard rule to

determine the values of these two quantities. Furthermore, the established

algorithm is often computationally slow and intensive, especially in high-

dimensional covariate spaces. Confronted with these problems, we proposed

a new type of estimation criterion, which is simple and easily implemented,

for θ0. The basic rationale behind this approach is to define the response

process N(y) = I(Y ≤ y) and to directly use the difference between N(y)

and its conditional mean G(y, xθ0) over the support of Y . Under some suit-

able conditions, the asymptotic distribution of the PLISE is derived to be

multivariate normal. To make inferences related to θ0, the frequency dis-

tributions of its bootstrap analogues are used to estimate the asymptotic

variance of the PLISE because a sandwich-type estimator tends to provide a

very poor approximation. With the proposed residual process, the method of

Xia (2009) is extended to establish a test rule to check the adequacy of model

(1). There are two features of the PLISE: Firstly, our estimation approach

can be applied to different types of response variable and outperforms the

existing ones; secondly, the foregoing inferences can be easily adopted and

generalized to the considered problems in this article.

When the true underlying model has a sparse representation, identifying

significant covariates becomes an important issue to enhance the accuracy in

prediction. The traditional best-subset selection algorithms are usually com-

putationally infeasible in the presence of a potentially high-dimensional co-

variate space. The ridge regression estimation is another variance-stabilizing

technique, which shrinks the least square estimator toward zero but not iden-
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tifies significant covariates cleverly. To simultaneously select significant vari-

ables and to estimate the parameters in regression models, Tibshirani (1996)

introduced a least absolute shrinkage and selection operator (Lasso). Since

Lasso variable selection might be inconsistent, Fan and Li (2001) and Zou

(2006) proposed a smoothly clipped absolute deviation (SCAD) penalty and

an adaptive Lasso instead. In their model specifications, the adaptive Lasso

further avoids the problem of nonconcavity in the SCAD penalty although

both of the procedures enjoy the oracle properties. By extending the adap-

tive Lasso in generalized linear models to our framework, we propose the

penalized pseudo least integrated squares estimator (PPLISE) and derive the

corresponding oracle properties. Moreover, in a small sample size scenario, a

multi-stage adaptive Lasso estimation procedure is proposed to improve the

possible selection inconsistency and predictive inaccuracy in the PPLISE.

For each fixed (y, xθ), the approach of Hall, Wolff, and Yao (1999) can be

applied for the estimation of G(y, xθ). Let K(u) denote a kernel density, h be

a positive-valued bandwidth, Nl(y,Xiθ) =
∑

j 6=iN
l
j(y)Kh(Xjθ−Xiθ)/(n−1),

i = 1, · · · , n, l = 0, 1, and Kh(u) = h−1K(u/h). The Nadaraya-Watson

estimator for G(y,Xiθ) is given by Ĝ(y,Xiθ) = N1(y,Xiθ)/N0(y,Xiθ). By

using the response process N(y) and a consistent estimator of G(y, xθ), the

pseudo least integrated squares estimator (PLISE) θ̂ is proposed to be a

minimizer of the pseudo sum of integrated squares (PSIS):

SS(θ) =
1

n

n∑
i=1

∫
Y
e2i (y; θ)dWni(y), (2)

where Y is the support of Y or the interval of interest, ei(y; θ) = Ni(y) −
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Ĝ(y,Xiθ), and Wni(y) is a non-negative weight function. In practical imple-

mentation, Ĝ(y, xθ) is set to be zero if the denominator N0(y, xθ) is zero.

Although a local linear estimator of G(y, xθ) can be used in the PSIS, it does

not share the properties of a cumulative distribution function and might

cause some complications in the above estimation procedure.

It follows from a direct algebraic calculation that

E[(N(y)−G(y,Xθ))
2] = E[(N(y)− FY (y|X))2] + E[(FY (y|X)−G(y,Xθ))

2]. (3)

Since the first term at the right-hand side of (3) does not depend on θ,

both minimizers of E[
∫
Y(N(y) − G(y,Xθ))

2dW (y)] and E[
∫
Y(FY (y|X) −

G(y,Xθ))
2dW (y)] can be shown to be θ0 under the validity of model (1),

where W (y) is a convergent function of Wn(y). Thus, minimizing SS(θ) is

on average approximated by minimizing E[
∫
Y(FY (y|X)−G(y,Xθ))

2dW (y)]

with respect to θ. In our theoretical development and numerical implemen-

tation, the quartic kernel K(u) = (15/16)(1 − u2)2I(|u| ≤ 1) is specified.

The advantage of such a density function is that θ̂ can achieve the
√
n-

consistency. As a spacial case, the uniform distribution or the empirical dis-

tribution of Y can be specified for Wni(y)’s in (2). In the case where G(y, xθ)

is known, the optimal weight for wni(y) = dWni(y)/dy is proportional to

{G(y,Xiθ)(1 − G(y,Xiθ))}−1, the reciprocal of the conditional variance of

Ni(y), at each fixed y. We further replace G(y, xθ) by a consistent estimator

Ĝ(y, xθ̂) and iteratively update the weight estimation. The resulting esti-

mator coincides with the maximizer of the following log-pseudo likelihood
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function for a random sample {Ni(y) : 1 ≤ i ≤ n}:

lp(θ) =
1

n

n∑
i=1

∫
Y

(Ni(y) ln(Ĝ(y,Xiθ)) + (1−Ni(y)) ln(1− Ĝ(y,Xiθ))dy. (4)

Let y(1) < · · · < y(m) denote the distinct order statistics of {Y1, · · · , Yn}

andW(j) =
∫ y(j+1)

y(j)
dWni(y). SinceNi(y)’s are zero-one processes and Ĝ(y,Xiθ)’s

are step functions with jumps occurring at {y(1), · · · , y(m)}, the PSIS in (2)

has a computationally more attractive alternative as follows:

SS(θ) =
1

n

n∑
i=1

m−1∑
j=1

e2i (y(j); θ)W(j). (5)

In contrast, the estimation procedure of Hall and Yao (2005) is often com-

putationally intensive. When the response variable Y is discrete and has a

finite support, the above estimation criterion can also be applied. As for the

binary response with values in {0, 1}, the PSIS will automatically reduce to

the sum of squares in Ichimura (1993). In kernel estimation, a criterion for

bandwidth selection is provided via generalizing the most commonly used

“leave one subject out” cross-validation procedure of Rice and Silverman

(1991). The optimal bandwidth hcv is naturally defined to be the unique

minimizer of

CV1(h) =
1

n

n∑
i=1

m−1∑
j

e2i (y(j); θ̂i)W(j) (6)

with θ̂i = arg min{(n − 1)−1
∑

l 6=i
∑m−1

j=1 e
2
l (y(j); θ)W(j)}. Another criterion

developed by Härdle, Hall, and Ichimura (1993) is further adopted and ex-
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tended to our framework. The estimators of h and θ0 can be simultaneously

obtained via minimizing CV2(h, θ) = SS(θ)

The steps and contributions of this research are stated as follows:

• We will present an appealing estimation procedure for index coefficients

and show that it outperforms the existing ones.

• Compared with the PMLE, an important advantage of the PLISE is

that it only requires a lower-order kernel in a one-dimensional band-

width space.

• The modified cross-validation scores and residual process are provided

for bandwidth selection and model checking.

• We employ random weighted bootstrap analogues of the asymptotic

variance of the PLISE.

• The L1-penalty with random weights is further adopted into the PLISE

criterion to improve estimation and variable selection simultaneously

in sparse high-dimensional models. Under the partial orthogonality

condition of Huang, Ma, and Zhang (2008), our PPLISE still enjoys the

oracle property when the number of covariates increases exponentially

with the sample size.

• In some applications, the predictive abilities of covariates might depend

on the values of a response variable. It is more realistic to consider the

following varying-index model:

FY (y|x) = G(y, xθ0(y)), (7)
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where θ0(y) is a vector of index coefficient functions of y. This mod-

elling approach is especially useful to handle an ordinal response vari-

able and for quantile forecasting. The PSIS in (5) and the PPSIS can

be modified as

SS(θ(y)) =
1

n

n∑
i=1

(Ni(y)− Ĝ(y,Xiθ(y)))
2 (8)

and

PSS(θ(y)) = SS(θ(y)) + λy

d∑
k=2

|θk(y)|
|θ̂k(y)|

. (9)

• In survival analysis, the response measurement represents the time to

a particular event. It is worthy to note that the considered model

includes more acceptable proportional hazards and accelerated failure

time models. A major challenge in dealing with this issue is that the

failure times of some individuals might not be available due to cen-

soring. Our results should be valuable in the development of related

inferences.

• The simulation experiments are conducted and the proposed approaches

are applied to two empirical examples.
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