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1 INTRODUCTION  

Detecting and controlling infectious disease outbreaks have long been a major 

concern in public health [1]. Recent efforts in building syndromic surveillance 

systems have included increasing the timeliness of the data collection process by 

incorporating novel data sources such as emergency department (ED) chief 

complaints (CCs) and over-the-counter (OTC) health product sales [2]. Research 

shows that these data sources contain valuable information that reflects current public 

health status [3], [4], [5], [6]. However, the noise caused by routine behavior patterns, 

seasonality, special events, and various other factors is blended with the disease 

outbreak signals. As a result, disease outbreak detection using the time series from 

syndromic surveillance systems is a challenging task.  

In a typical syndromic surveillance system [7], [8], [9], [10], [11], [12], the data 

are classified and aggregated to generate univariate or multivariate time series at a 

daily frequency. An example of a univariate time series is the daily ED visits 

associated with a particular syndrome (for example, the respiratory syndrome). An 

example of a multivariate time series is the number of daily visits with a particular 

syndrome from multiple EDs. If geographic information such as the ZIP code is 

available, the multivariate time series in these examples would be the daily counts of 

patients with a particular syndrome from the ZIP code areas near an ED.  

Most time series outbreak detection methods follow a two-step procedure 

[13], [14], [15], [16]. In the first step, a baseline model describing the “normal 

pattern” is estimated using the training data that usually contain a historical time 

series without outbreaks. The baseline model then is used to predict future time series 

values. In the second step, statistical surveillance methods such as the Shewhart 

control chart [17], [18] or the Cumulated SUM (CUSUM) [19] method then take the 

prediction error (observed value minus predicted value) as the input, and output alert 

scores. Higher alert scores are usually associated with a higher risk of having 

outbreaks. When the alert scores exceed a predefined threshold, the alarm is triggered.  

Two main problems exist for current detection methods. First, the two-step 

procedure is based on the assumption that there are no outbreaks in the training data. 

When a real-world dataset is used for training, the assumption is very hard to verify. 

Moreover, a full investigation of disease outbreaks during the data collection period is 

usually too expensive to conduct.  

The validity of the detection results may be seriously impaired if it cannot be 

verified that the training data are outbreak-free. The estimated parameters of the 

baseline model may be biased by outbreak-related observations. Subsequent 

prediction and outbreak detection, as a result, may be negatively affected. The 

problem can seriously reduce the practical value of the outbreak detection method.  



Second, existing time series detection methods also lack the ability to handle 

sporadic extreme values. Special events such as holidays and the media coverage of a 

particular disease may cause spikes that are not associated with disease outbreaks [20]. 

These extreme values usually last for a very short time (often just one or two days) 

and do not affect subsequent time series values. Anomalies related to real disease 

outbreaks, on the other hand, usually show a prolonged upward drift. The magnitude 

of disease-related drift is usually much smaller compared to the sporadic spikes 

caused by special events. Many outbreak detection algorithms take advantage of these 

characteristics and accumulate the errors so that small increases can be detected 

effectively [14], [15], [21]. The accumulation process, nevertheless, is susceptible to 

the presence of extreme values.  

The deficiencies of current outbreak detection methods motivate our efforts to 

develop novel algorithms that can address these shortcomings. To deal with the 

problem of having outbreak-related observations in training data, a flexible statistical 

model must be used so that the model can adjust itself automatically when outbreak-

related observations exist. In econometrics and time series literature, this is usually 

refereed to as the problem of modeling endogenous structural changes [22], [23].  

A natural way of modeling structure changes in a time series is introducing 

additional hidden state variables which control the underlying time series dynamics. 

The Markov switching models originally proposed by Hamilton are one popular 

model of this kind [24]. This family of models includes a hidden state variable that 

may have a different value in each period. It takes values of either 0 or 1 that 

correspond to different conditional means, variances, and autocorrelations of the time 

series. The hidden state evolves following a first-order Markov process. That is, the 

current hidden state depends only on its historical values from the last period.  

This hidden state method can be easily extended to handle extreme values. An 

additional hidden state can be included to model the presence of sporadic extreme 

values. With this additional hidden state, the model can distinguish between “normal” 

and “extreme” observations. That is, if a spike appears without signs that the sudden 

increase can be associated with drifts either before or after it, then the model can, 

based on the statistical evidence, assign the sudden increase as an extreme value 

instead of an outbreak. The negative effect of extreme values on outbreak detection 

can thus be reduced.  

The main contribution of this paper is to present a prospective outbreak detection 

method that is robust to pre-existing outbreaks and extreme values. Prospective 

outbreak detection, as opposed to retrospective detection in which the entire set of the 

observations is available to the detection algorithms, assumes that only observations 

made prior to the time of the detection are available to the detection algorithms. 

Retrospective detection is useful primarily for offline analysis of historical data, 

whereas prospective detection is intended for use in monitoring incoming public 

health data streams in an online fashion. We utilized the Markov switching model that 

includes three hidden state variables in each period. The first hidden state variable 

models the disease outbreak state and the second hidden state variable models the 

presence of extreme value. If the extreme value exists, the third hidden state variable 

represents the size of the extreme value. We demonstrate that our approach 



outperforms several existing state-of-art outbreak detection algorithms using both 

simulated and real-world time series data.  

This paper is organized as follows. Section 2 briefly introduces current outbreak 

detection methods and the Markov switching models. Section 3 presents our outbreak 

detection method. An evaluation study that uses both simulated and real-world data is 

summarized in Section 4. We conclude our paper in Section 5.  

2 BACKGROUND  

Current time series outbreak detection methods mostly follow a two-step 

procedure: a base-line time series estimation step followed by a statistical surveillance 

step [13], [14], [15]. We review these two major steps in this section.  

Markov switching models, which belong to a broader class of statistical models 

that make use of hidden state variables, are also reviewed. We present the typical 

model settings and the estimation approaches.  

2.1 Time Series Modeling  

The first step in traditional outbreak detection methods is to develop a model that 

can describe the normal time series patterns. The most widely used model is the 

Autoregressive Integrated Moving Average (ARIMA) models of Box and Jenkins 

[25]. The model setting can be described by three parameters: (p,d,q). The parameter 

p refers to the length of historical time series values that can affect current 

observations. The second parameter d specifies how many difference operations are 

required to make the time series stationary. The third parameter q specifies the length 

of historical error terms that can affect current observations. In a typical setting that 

does not involve seasonal fluctuation, the observed time series is usually assumed to 

be stationary, that is, d = 0. Specifically, an ARIMA(p,0,q) model can be written as:  

qtqttptpttt bbyayayaay     1122110  

where yt is the observed time series and ϵt is the error term. To ensure that the model 

“learns” the normal time series pattern, the data used for model estimation should be 

outbreak free. Given p and q, the parameter values (a0, a1, ..., bq) can be estimated 

using likelihood maximization [26]. However, different model settings that 

correspond to different values of p and q may affect prediction accuracy. The values 

of p and q are usually determined by model selection criteria that take both goodness 

of fit and model complexity into consideration. Commonly used model selection 

criteria include Akaike information criterion (AIC) [27], [28] and Bayesian 

information criterion (BIC) [29]. Note that the model selection criteria are closely 

related to the “cross-validation” evaluation approach [30] commonly used by the 

machine learning community [31]. In fact, cross-validation is asymptotically 

equivalent to AIC [32].  

Other modeling techniques such as the generalized linear model using Poisson 

distribution [33], expectation-variance model [34], and the Wavelet Model [35] have 

been evaluated in previous studies.  



For the purpose of detecting outbreaks, there are two issues warranting further 

discussion: the modeling of the day-of-week and seasonal effects.  

2.1.1 Day-of-Week Effect  

The syndromic surveillance time series usually exhibits strong day-of-week 

effects. For example, there are usually more ED visits during the weekends than 

during the weekdays [15]. The variation among different day-of-weeks is usually 

assumed to be fixed. As an illustrative example, an ARIMA(1,0,0) model with a fixed 

day-of-week effect can be written as  

tttttt yaadwdwdwy  1106,62,21,1   

where dt,i {0,1},i = 1,2,3,4,5,6 are dummy variables indicating a particular day-of-

week. For example dt,1 = 1 if day t is a Monday and 0 otherwise. Note that we need 

only 6 dummy variables for 7 day-of-weeks because of the existence of the constant 

term a0.  

2.1.2 Seasonal Effect  

Similar to the day-of-week effect that refers to a weekly cyclic pattern, the 

seasonal effect refers to a yearly cyclic pattern. Tri-geometric functions are commonly 

used to model deterministic seasonal fluctuation. This technique is usually referred to 

as the Serfling model [36], [37], which can be written as:  
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Note that both day-of-week and seasonality are included in the model. The model can 

be refined by including more tri-geometric functions that correspond to semi-annual 

and even quarterly cyclic patterns. However, it has the obvious problem of assuming 

the same seasonal peaks and troughs across the whole monitoring period [37]. Our 

preliminary experiments show that the Serfling model fits the observed syndromic 

time series poorly especially when the seasonality is strong. The Serfling model 

assumes a particular shape of the time series that may not be empirically valid.  

Other modeling techniques allow more flexible seasonal fluctuation across years. 

One possibility is to use the Holt-Winters exponential smoothing to model seasonality 

[38], [39]. An empirical study showed that, in the context of syndromic surveillance, 

Holt-Winter exponential smoothing outperformed the Serfling model in terms of 

prediction accuracy [40].  

The concept of the seasonal random walk [41] can be applied to model the 

seasonal effect. The basic idea is that the same day-of-year should have the same 

expected value. Reis and his colleagues estimated the expected value using the 

trimmed-mean of historical time series value with the same day-of-year in an 8-year 

window [14], [15]. The seasonal effect can then be filtered out by subtracting the 

observed value from the day-of-year expectation.  



2.2 Statistical Surveillance Methods  

For outbreak detection purposes, the prediction errors from the time series 

modeling step are further processed using statistical surveillance methods. Various 

statistical surveillance methods such as the Shewhart control Chart [17], Cumulated 

Sum (CUSUM) [19], Exponential Weighted Moving Average (EWMA) [18], 

Shiryaew-Roberts method [42], [43] and the likelihood ratio methods [44] can be 

applied for disease outbreak detection. However, most syndromic surveillance studies 

use the Shewhart control chart, CUSUM, EWMA and their variations. Our review 

focused mainly on these three methods. More detailed reviews can be found 

elsewhere [45].  

The Shewhart control chart [17] checks the t-value of the prediction errors period 

by period. It performs the best if large, isolated outbreaks are involved. However, 

since disease outbreaks often exhibit only small deviations in their early stages, the 

Shewhart control chart may not be the best choice for our purposes.  

The CUSUM method minimizes the maximum value of the conditional expected 

delay “when the outcome before outbreak is the worst possible” [46]. It uses a 

recursive formula to accumulate the prediction errors:  

 



  1,0max ttt CKeC  

where et is the prediction error from the time series model and K is a predefined 

constant that is commonly referred to as the allowance. The alarm is triggered if Ct
+ 

exceeds a predefined threshold.  

The EWMA method can be seen as a linear approximation of the likelihood ratio 

method [44], [47]. The alert score is computed by accumulating forecasting errors 

with exponentially decaying weights. Similar to the CUSUM method, higher outbreak 

scores are usually associated with a higher risk of having an outbreak. The threshold 

can be determined from theoretical analysis or empirical studies [48], [49].  

Some syndromic surveillance studies use a moving average scheme to accumulate 

forecasting errors [14], [15]. Their studies have showed that a linear increasing 

weighting schemes performed best in terms of outbreak detection ability.  

2.3 Performance Measures  

The most commonly used performance measure in statistical surveillance 

literature is the Average Run Length (ARL). ARL0 denotes the expected run length 

until the first false alarm, and ARL1 denotes the expected run length until an alarm 

when the process is out of control at the start of the surveillance [45], [50], [48], [49].  

These measures, nevertheless, are less intuitive under the context of disease 

outbreak detection. Most disease outbreak detection studies use per day sensitivity 

and false alarm rate [33], [34], [14]. Sensitivity is the probability of having alarms on 

outbreak days. False alarm rate is the probability of having alarms on non-outbreak 

days.  



2.4 Extreme Values in Syndromic Surveillance Time Series  

Current surveillance methods are very sensitive to extreme values. The main 

reason is because the statistical surveillance methods accumulate the forecasting 

errors and there are no simple methods that can be used to filter out the extreme 

values. Burkom [51] proposed using a “reset” rule to bring down the alert scores 

when extreme values are known to be causing the elevated scores. However, it is not 

clear how to establish effective reset rules.  

Common reasons behind the extreme values include holidays, media coverage, 

and special events [20]. However, existing studies have not offered help for handling 

the negative effects caused by the extreme values. Previous studies have used holiday 

dummies to absorb the holiday effects [34]. This technique, nevertheless, imposes an 

unrealistic assumption that all holidays have the same effect on the time series.  

2.5 The Markov Switching Model  

The Markov switching model belongs to the family of state-space models. A state-

space model is a statistical model with hidden state variables controlling observable 

random variables. There are two types of equations in this model: the measurement 

equations and the transition equations [52]. The measurement equation defines how 

hidden states affect the observable random variables. The transition equation, on the 

other hand, defines how the state variables evolve over time.  

When the state variable is discrete, the state-space model is usually called the 

hidden Markov model [53], [54] or the Markov switching model [24] depending on 

the choice of the measurement equation. The measurement equation in the hidden 

Markov model is usually formulated so that the observable random variables at period 

t only depend on the hidden state variables at the same period.  

The Markov switching model addresses the weakness of the hidden Markov 

model by including lagged observations. The observable random variables in the 

Markov switching model depend on their historical values as well as the hidden state 

variables. This setting makes the Markov switching model more suitable for time 

series related problems. Figure 1 illustrates the dependency difference between the 

Markov switching model and the hidden Markov model.  

 



 
Fig. 1.  Markov Switching models (upper panel) and hidden Markov 

models (lower panel). The rectangles are observable random 

variables and the circles are hidden state variables. Arrows indicate 

the dependencies among variables. 

 

Strat and Carrat [55] applied the state-space model for disease outbreak detection. 

They used a two-state hidden Markov model on a weekly influenza-like illness (ILI) 

incidence and showed that the hidden Markov model clearly differentiated between 

epidemic and non-epidemic rates. However, as they pointed out in the conclusion, 

“the validity of the hypothesis that ILI incidence rates are independent conditional on 

the state is questionable.” They also pointed out that autoregressive terms should be 

included for better performance. We are unaware of prior studies on applying Markov 

switching models for outbreak detection.  

Most applications of the Markov switching models fall in the field of economics 

and finance. Notable examples are identifying macroeconomics business cycle [24] 

and modeling changing interest rates regimes [56]. A simple Markov switching model 

can be written as  
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Equation 1 defines how the hidden state variable st controls the dynamics of the 

observable random variable yt. At an non-outbreak period (st = 0), yt is determined by 

a drift term a0,0 and the autoregressive parameter a1,0. If an outbreak occurs (st = 1), the 

drift term increases to a0,0 + a0,1 and the autoregressive parameter increases to a1,0 + a1,1 

(assuming a0,1 ≥ 0 and a1,1 ≥ 0). Equation 2 indicates that the hidden states evolve 

following a Markov process with transition probability pij.  



Note that if we have a time series of T period, there are 4 parameters and T hidden 

state variables in Equation 1, together with 2 variables for transition probability in 

Equation 2 and a variance for error terms in Equation 4. We have more unknowns 

than the number of periods, which complicates the estimation process. We briefly 

discuss the model estimation issues below.  

2.5.1 Model Estimation for the Markov Switching Model  

Model estimation for the Markov switching model is much more complicated than 

that of the standard time series models such as the ARIMA models. The technical 

difficulty arises from the presence of unknown hidden states. In a simplified case 

involving only one hidden outbreak state variable with two possible states and a total 

of T periods, a direct evaluation of the likelihood function involves a summation of all 

possible trajectories of hidden states. The time complexity is O(2T), which is 

intractable in practice. More sophisticated algorithms, which compute the posterior 

distribution of the hidden states using a forward-filtering-backward-smoothing (FFBS) 

procedure [52], [57], take only O(23T) steps. The computation of the posterior 

distribution of the hidden states is required by many estimation methods such as the 

expectation-maximization (EM) algorithm [58], [59], [60], Gibbs sampling, and 

Markov Chain Monte Carlo (MCMC) [61], [62], [63]. Note that to deliver the final 

optimal parameter estimation, these algorithms need to execute repeatedly until 

certain convergence criteria are met.  

The EM algorithm finds the maximum of the likelihood function by iterating 

between calculating the expected value of state variables given current parameters and 

calculating the maximum of log likelihood given the expected state variables. It was 

applied to estimate the hidden Markov model in a previous outbreak detection study 

[55]. Compared to other numerical optimization methods, the EM algorithm is more 

robust and usually converges if a maximum exists. However, it is possible that the 

algorithm converges to a local maximum instead. In practice, the EM algorithm is run 

with multiple initial values.  

A serious drawback of the EM algorithm is the label switching problem [57]. The 

Markov switching model (and the hidden Markov model) is invariant under arbitrary 

permutations of the state labels. As a result, we cannot be sure whether st = 0 is 

representing an outbreak or non-outbreak state before the estimation procedure is 

completed. The label switching problem is especially an issue when the Markov 

switching model is part of a larger automatic disease outbreak detection system.  

Gibbs sampling [62], [63], [64] is an alternative estimation method that can avoid 

the label switching problem. The Gibbs sampling iterates to draw random variables 

from conditional posterior distributions of parameters and state variables to simulate 

the full posterior distribution of parameters and state variables. Specifically, let Θ = 

{θ1,...,θk} denote the unknown parameters (and state variables). By the Bayes 

Theorem, the posterior distribution p(Θ|Y ) is proportional to the likelihood of p(Y |Θ) 

multiplying the prior of parameters p(Θ). The label switching problem can be avoided 

by imposing proper constraints on p(Θ). Gibbs sampling estimates parameters using a 

simulation-based method. The following steps can be used to simulate Θ from its 

posterior distribution. First, select initial values Θ(0) = {θ1
(0),...,θk

(0)}. For i = 1,2,...I, 

iterate through the following steps:  



1. Draw θ1
(i) from p(θ1|Y,θ2

(i-1),...,θk
(i-1)).  

2. Draw θ2
(i) from p(θ2|Y,θ1

(i),θ3
(i-1),...,θk

(i-1)).  

...  

3. Draw θk(i) from p(θk|Y,θ1
(i),θ2

(i),...,θk-1
(i)).  

4. Record Θ(i) ≡{θ1
(i),θ2

(i),…,θk
(i)} 

It has been shown that {Θ(i)} converges to p(Θ|Y ) [65], [66]. As a result, the 

posterior mean of θj can be estimated by the average of {θj
(i)}, excluding certain “burn-

in” iterations to minimize the effect of the initial value. The confidence intervals of 

the estimated parameters can also be calculated directly from {θj
(i)}.  

3 OUTBREAK DETECTION USING  
THE MARKOV SWITCHING WITH JUMPS (MSJ) MODEL  

We developed our disease outbreak detection algorithm based on the Markov 

switching models [24]. Two hidden disease outbreak states (0 or 1; non-outbreak or 

outbreak) were assumed. To handle the sporadic extreme values, we included a jump 

component to filter their negative effects on outbreak detection. Seasonality was 

handled based on the concept of seasonal random walk.  

Our proposed MSJ model is described below:  
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where Y t-1 = (y1,y2,… ,yt-1) and m = 365. The hidden state variable st = 1 indicates 

period t is an outbreak period, 0 otherwise.  

Equation 5 filters out the seasonal fluctuation by subtracting the day-of-year 

expectation from observed time series values. The day-of-year expectation is 

estimated using the historical values within a day-of-year window in the past three 

years (Eq. 13-14). The next equation (Eq. 6) further decomposes the residual (zt) into 

normal variation (xt) and a possible jump component. If a jump exists (Jt = 1), then ξt 

is the size of the jump. Equation 7 articulates the dynamic behavior during outbreak 

and non-outbreak periods. The hidden state variable st controls the constant term and 

an autoregressive coefficient. The variables dt,i are day-of-week dummies. The 



exogenous variables vt,i are optional controlling factors. Environmental variables such 

as pollen level and temperature are two possibilities. If necessary, more lagged 

dependent variables can also be included. For example, we can set vt,1 = xt-2, vt,2 = xt-3, ..., 

vt,6 = xt-7. As defined in Equation 10, the transition of st follows a first-order Markov 

process.  

Compared to conducting outbreak detection using a baseline time series model 

combined with a statistical surveillance method, our approach provides the following 

advantages. First, the alert scores (p(st = 1|Y t)) of our approach have a clear and 

intuitive interpretation. Most existing outbreak detecting methods output alert scores 

that do not have clear meanings. The only way to make sense of the alert scores is to 

compare the scores with an established threshold. The alert score of our detection 

algorithm, without reference to any thresholds, can be interpreted as the outbreak 

probability given available information.  

Second, our algorithm provides an estimated outbreak size in addition to outbreak 

probability. In traditional outbreak detection methods, it is not easy to estimate the 

outbreak size directly from the alert statistics or estimated parameters. Our method 

allows the model to recognize different temporal dynamics in different periods. The 

outbreak size can be calculated directly from the estimated parameters. The 

information could be valuable for the planning of public health intervention.  

Third, the jump component gives our algorithm the ability to separate sporadic 

extreme values from slow-moving disease outbreaks. The additional information 

provides flexibility that is valuable for different surveillance needs.  

3.1 Changing Dynamics and Outbreak Size  

The hidden variable st plays an important role in determining the dynamics of xt. 

Consider a simplified setting with no day-of-week effect (wi = 0) nor exogenous 

variables (bi = 0). If we have st = 0 for all time except t = t1, then the observed value 

increased by Δt1 ≡ a0,1 + a1,1yt1-1 at t1, ignoring the effect of the noise (et). Note that the 

autoregressive coefficient a1,1 also plays an role in determining the magnitude of the 

increase at time t1. After this time point, the effect of Δt1 decreases exponentially. The 

scenario is similar to dropping a group of infected persons in a large community at 

period t1 and seeing the disease starting to spread. However, since infected persons 

recover from the disease quickly, the disease dies out quickly as well.  

If st = 1 for t = t1, t1 + 1,…, t1 + q, the effect of increased constant term and 

autoregressive coefficients accumulates during the outbreak periods until it reaches 

the new stable level. The new long-term mean can be found by writing xt as a function 

of ai,j and et only. A simple computation gives E[xt|st = 1] ≡ m 2 = (a0,0 + a0,1) / (1 - a1,0 - 

a1,1). Similarly, the long-term mean of non-outbreak periods is E[xt|st = 0] ≡ m 1 = a0,0 / 

(1 - a1,0). The outbreak size is the difference between m 2 and m 1.  

3.2 Model Estimation  

Gibbs sampling is used for model estimation. We need to estimate the following 

sets of coefficients and hidden states: time series coefficients A = (a0,0,a0,1,a1,0,a1,1), day-

of-week coefficients W = (w1,w2,…,w6), exogenous variable coefficients B = 



(b1,b2,…,bk), variance of the error term (σ2), transition probability P = (p00,p11), hidden 

outbreak state ST = (s1,s2,…,sT), hidden jump state JT = (J1,J2,…,JT), hidden jump size ΞT 

= (ξ1,ξ2,…,ξT), and variance of jumps (σa
2).  

To facilitate the simulation of random variables from the posterior distributions, 

conjugate priors are used for all parameters. As discussed in the Appendix, all 

conditional posteriors follow well known statistical distributions and are summarized 

in Table 1. The dot ( ) in Table 1 indicates the conditioning on other parameters and 

hidden states. To increase the efficiency of sampling st, the FFBS procedure is used. 

TABLE 1 

Conditional Posterior Distributions 

(A,W,B)|  ~ Multivariate Normal 

σ2| ~ Inverse Gamma 

ξt| ~ Normal 

Jt| ~ Binomial 

st| ~ Binomial 

σa
2| ~ Inverse Gamma 

pii| ~ Beta 

It should be noted that to avoid the label switching problem, we constraint the 

parameter sampling results so that m 1 < m 2 is satisfied. If the constraint is violated, 

(A,W,B) are redrawn until the constraint is satisfied.  

3.3 Prospective Outbreak Detection  

Given an up-to-date time series, prospective outbreak detection answers the 

question “What is the probability of having a disease outbreak today?” Letting t 

denote the current time period, we want to estimate p(st = 1|Y t), where st is the hidden 

outbreak state and Y t is the vector contains all time series values up to time t. When a 

new time series value arrives in the next period, the system needs to re-run the model 

and provide the estimation of p(st+1|Y t+1).  

Our preliminary experiments found that direct implementation of the estimation 

algorithm provides little valuable outbreak information because the algorithm became 

too sensitive to small changes. The algorithm tried to scrutinize all small changes and 

tended to over react to those changes. To overcome this difficulty, we developed a 

regulation technique to desensitize the algorithm so that small, unimportant changes 

would be ignored.  

3.3.1 Desensitization for Prospective Outbreak Detection  

The desensitization technique is an extension of the solution for the label 

switching problem. To make the algorithm ignore small, unimportant changes, we 

rejected the parameter sampling results that indicated small changes. Specifically, we 

chose g as the minimal outbreak size that we wanted to detect. We let 
       cccc aaaa 1,10,11,00,0 ,,,  be the sampling result of the c-th iteration. We rejected the sampling 

result if  cm1  ≥  cm2  - g. The coefficient g is set to 5% of the time series mean during 

the training period. Also, the autoregressive coefficient needs to have a value between 



-1 and 1 to ensure that the time series is stationary. The desensitization procedure is 

summarized in Algorithm 1.  

Algorithm 1 Desensitization Procedure 

repeat 
Draw (A(c),B(c),W(c)) from (A,B,W)|  

                      ccc aam 0,10,0 1/
1

  

                           ccccc aaaam 1,10,11,00,02 1/   

until     gmm cc  21  and 10,1 a  and 11,10,1  aa  

return  (A(c),B(c),W(c)) 

 

3.3.2 Prior Distributions  

While some parameters of the prior distributions are quite robust to various 

circumstances, others need to be customized case by case. We applied a simple AR(1) 

model with day-of-week effect on the training data with seasonality removed. The 

estimated variance of the error term is used to set up the parameters for the prior of σ2 

and σa
2. The estimated day-of-week effects are used to set up the prior of wi. The prior 

distributions used in this study are summarized in Table 2.  

TABLE 2 

Prior Distributions 
Parameter Distribution Parameter 

 1,10,11,00,0 ,,, aaaa  Multivariate Normal(M, V) 
 

   3,3,400,400

,6.0,15.0,0,0

4
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2  Inverse Gamma   ,3 est. variance  1   

2
a  Inverse Gamma   ,3 est. variance  15    

 61 ,, ww   Multivariate Normal(M, V) 

M is est. from the training data 
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P11 Beta a = 2, b = 0.2 

P22 Beta a = 2, b = 0.1 

The off-diagnose elements of V is set to zero 

 

3.3.3 Summary of the Estimation Procedure  

Given a time series covering period 1 to t1, our goal is to estimate the outbreak 

probability of period t1, together with other relevant parameters and hidden state 

variables. Using Gibbs sampling for estimation, we need to choose the total number 

of iteration B and the “burn-in” iteration b. The sampling results between iteration b + 

1 and B are then used to compute the outbreak probability (alert score) and the 

estimates of other parameters. The pseudo code that summarizes the procedure can be 

found in Algorithm 2. We implemented our approach on R, an open-source statistical 

software (http://www.r-project.org/).  



Algorithm 2 Prospective Outbreak Detection Using the Markov Switching with 

Jumps (MSJ) Model 

for c = 1 to B do 

(A(c),B(c),W(c)) ← Desensitization() 

                Draw σ2(c) from σ2|  

                Draw st1
(c),st1-1

(c),…,s1
(c) using FFBS 

                Draw Jt
(c) from Jt|  for t = 1,2,…,t1 

                Draw ξt
(c) from ξt|  for t = 1,2,…,t1 

                Draw σa
2(c) from σa|  

end for 
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APPENDIX A 

SELECTED DERIVATION OF THE POSTERIOR DISTRIBUTIONS FOR THE 
MARKOV SWITCHING WITH JUMPS MODEL  

We provide in this appendix the outline for how to derive the conditional posterior 

distributions. The conditional posterior distributions play a key role in conducting 

statistical inference. The estimation process iterates to draw random variables from 

the conditional posteriors in order to construct the joint posterior distribution of 

parameters and hidden state variables. The discussion is based on the following model:  
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Note that this model is slightly different from the one used in our study. The main 

difference is that we assume that the time series has been “preprocessed” to remove 

seasonality. So the yt here is equivalent to zt in Equation 5. Also, without loss of 

generality, bi is assumed to be zero. We applied Bayesian inference techniques in this 

study [73]. Specifically, Gibbs sampling was used. Our basic model has the following 

state variables: ST = (s1,s2,...,sT), JT = (J1,J2,...,JT), and ΞT = (ξ1,ξ2,...,ξT). Although XT = 

(x1,x2,...,xT) is not observed either, the values are fully determined if both JT and ΞT are 

known. The coefficients to be estimated are denoted by Θ = (a0,0,a0,1,a1,0,a1,1,p11,p22,q1, 

σ2,σa
2,w1,...,w6).  



Using the Gibbs sampling technique, we approximate the posterior distribution of 

parameters and hidden state variables, p(ΞT,JT,ST,Θ|Y T), by iteratively drawing random 

variables from the following conditional distributions:  
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The following is the derivation of the conditional posterior distributions.  

A.0.1 Drawing from p(ΞT | JT,ST,Θ,Y T)  

To draw ΞT from its conditional posterior, we iterate through each period and draw 

ξt given ξ-t = {ξ1,...,ξt-1,ξt+1,...,ξT} and other random variables. Consider the jump size ξt 

at period t when the corresponding indicator variable Jt = 1.  
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Note that p(ξt|ST,Θ) = p(ξt) and p(ξ-t,JT|ξt,ST,Θ) = p(ξ-t)p(JT) by definition. To make 

the equations easier to read, we suppressed the conditioning on ΞT,JT,ST,Θ at (23) and 

in the following discussion.  

Since  
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Substituting (24) – (26) back to (23) and complete square with respect to ξt, we get the 

conditional posterior distribution of ξt:  
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where  
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A.0.2 Drawing from p(JT | ΞT,ST,Θ,Y T)  

The posterior of Jt is  
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The posterior probability of Jt = 1 can be calculated by considering the odd ratio  
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A.0.3 Drawing from p(ST | ΞT,JT,Θ,Y T)  

Since xt = yt - ξtJt, the conditional posterior p(ST | ΞT,JT,Θ,Y T) can be written as 

p(ST|XT,Θ). Multi-move Gibbs sampling is used to draw ST from its posterior. To 

achieve this, the first step is to calculate the filtered state probabilities, i.e., p(st = l | Xt), 

l {0,1}. The calculation can be divided into three steps:  

(1) One-step ahead prediction of st:  
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(2) Filtering for st  
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where  
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The smoothed probability p(ST | XT,Θ) can be calculated as follows:  
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The multi-move Gibbs sampling makes use of the following expansion for ST:  
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A.0.4 Drawing from p(ΘT | ΞT,JT,ST,Y T)  

Given state variable ST and jump variables JT,ΞT, the posterior distribution of 

a0,0,a0,1,a1,0,a1,1,wi,σ2 follows from the standard Bayesian regression model.  

Specifically, let mt = {1,st,xt-1,stxt-1,dt,1,...,dt6} be a row vector, then MT = 

{m1′m2′...mT′}′ is a matrix with T rows. Then the posterior of β = 

{a0,0,a0,1,a1,0,a1,1,w1,w2,...w6} follows a normal distribution  
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The posterior distribution of σ2 follows Inverse Gamma distribution  
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The posteriors of p00 and p11 are  
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where nij refers to the count of transitions from state i to j, which can be calculated 

directly from ST. uij refers to the parameters of the prior distributions for p00 and p11.  

The posterior of q1 is  

 00111 ,~| vv

T nvnvbetaSq                                                                        45  

where nv1 is the count of Jt = 1 and nv0 is the count of Jt = 0. v1 and v0 are the parameters 

of the prior distribution of q1.  
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