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Abstract

The classical continuum mechanics is proved to succeed in many me-
chanics related regions where the material would deform like solid me-
chanics and fluid mechanics. Classical continuum mechanics simplifies
the analysis of deformable material through a series of assumptions and
linearizing processes, such as setting the material homogenous (the den-
sity ρ and other mechanical properties independent of location), isotropic
(resulting in the symmetry of the mechanical properties), and the infinites-
imal strain (linearizing the analysis), e.t.c1.

However, under some conditions, the assumptions above could not be
valid and the non-linear terms appear. For example, when the deformation
is too large, the infinitesimal strain assumption fails and the material
derivative no longer equals to the spatial derivative. Further more, the
general practical material is not always that homogeneous as we would
like it to be, so the density ρ may not be a constant and its dependence
on location has to be taken into consideration.

The molecular dynamics(MD) method, however, could help us save the
effort to distinguish whether the simplified assumptions valid or invalid
because of the fact that we start the analysis from the scale of the physical
composition of materials.

In the present work, we would go through the conservation laws of
energy from the thermodynamics, since it is the rule material in nature
has to follow no matter how small it is. We would combine the thermody-
namic properties derived from MD as ensemble and the existing relations
between elasticity and thermodynamic properties such as internal energy
and free energy to finally derive the mechanical properties.

1”Classical and Computational Solid Mechanics”, by Y.C.Fung and Pin Tong, 2001, World
Scientific
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1 The Literature Review: Deriving Mechanical
Properties from MD

All those non-ideal condition such like inhomogeneity and the large deformation
compared to the size of materials would lead our analysis to the non-linear field
theory, and sometimes it is beyond our ability to derive the behaviour of material
under deformation. The molecular dynamics(MD), however, could be used to
examine whether the simplifying assumptions could be applied.

Since general material could be regarded as the composition of atoms and
molecules, and the macroscopic properties could be derived form the ensemble
properties, it is reasonable to analyze the behavior of the material starting from
MD.

Some trial has been conducted, such as the study of mechanical properties
of copper using effective-medium theory(EMT) and MD2. Its main point is that
the EMT could describe the interactions between copper atoms better than the
pair potential such as Lennard-Jones potentials.

Another trial is the iterative-like method of Lili Zhang, John Jasa, George
Gazonas, Antoine Jerusalem, and Mehrdad Negahban.3 They assume a classical
continuum mechanics-like deformation and Cauchy-stress-like stress to exist,
compute the two physical value in a iterative-like way until they are matched
with the ones from classical continuum mechanics way, and eventually claim
that the assumed ones the exact values they want.

Also, the method combining micro-continuum theory and MD given by
R.Maranganti and P.Sharma4 also suggests an interesting possible way through
which we derive the micro-continuum properties first, and then expand the
length scale to reach the ones of macro-continuum mechanics.

Although many trials have been done, the straightforward way to start from
computing the thermodynamic properties such as the free energy and internal
energy is from MD and combine it with the classical continuum mechanics is
seldom mentioned.

The main goal of the present work is to derive a general method starting
from the thermodynamics based on molecule scale simulations, combining it
with the linear, homogenous, and isotropic elasticity for simplifying the analysis
and effort paid to examine the results, since under such conditions, there only
exists two independent variables to check: the first Lame constant λ and the
second Lame constant µ.

2”Molecular-dynamics study of mechanical properties of copper”, by P. Heino, H.Hakkinen,
and K.Kaski, 1997

3”Extracting continuum-like deformation and stress from molecular dynamics simulation”,
by Lili Zhang, John Jasa, George Gazonas, Antoine Jerusalem, Mehrdad Negahban, 2014

4”A novel atomistic approach to determine strain-gradient elasticity constants: Tabulation
and comparison for various metals, semiconductors, silica, polymers and the (Ir) relevance for
nanotechnologies”, by R.Maranganti and P.Sharma, 2007
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2 The Thermodynamics and The Elasticity

2.1 The Classical Form of Relation between Thermody-
namics Properties and Elasticity

For the Energy Equations of elasticity, we have:
The kinetic energy K:

K ≡
∫
V

1

2
ρvividV (1)

where ρ is the density of material(here we assume it is independent of location),
vi is the velocity of particle in tensor form and V is the volume domain of
interest.

The internal energy E:

E ≡
∫
V

ρEdV (2)

where E is the internal energy per unit mass.
The heat input Q̇:

Q̇ ≡ −
∫
S

hinida = −
∫
V

hi,idV (3)

where hi is the heat flux going through the surface S,da is the surface ele-
ment,and ni is the normal vector of surface element da.

The power external force exerted on the system P is:

P ≡
∫
V

FividV +

∫
S

Tivida

=

∫
V

FividV +

∫
S

(σijnj)vida

=

∫
V

FidV +

∫
V

(σijvi),jdV

=

∫
V

(Fivi + σij,jvi + σijvi,j)dV (4)

where Fi is the external force per unit volume, Ti is the traction exerting on the
surface, σij is the Cauchy stress related to the traction Ti (Ti = σijnj).

using the first law of thermodynamics:

K̇ + Ė = Q̇+ P (5)

then:

1

2
ρ
D(vivi)

Dt
+

1

2
(vivi)

Dρ

Dt
+

1

2
(vivi)ρvj,j + ρ

DE
Dt

+ EDρ
Dt

+ Eρvj,j
= −hj,j + Fivi + σj,jvi + σijvi,j (6)
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through continuity equations:
Dρ

Dt
+ ρvj,j = 0

ρ
Dvi
Dt

= σij,j + Fi

(7)

then:

ρ
DE
Dt

= −hj,j + σij :
1

2
(vi,j + vj,i) (8)

Consider the small neighborhood near the thermal equilibrium and the in-
finitesimal strain imposed very slowly:

ρdE = dQ+ σijdeij (9)

where eij ≡ 1
2 (ui,j + uj,i) and ui is the displacement field.

Now apply the second law of thermodynamics:

dS = dSe + dSi, (10)

where dSe = dQ
dT , dS is the increase of entropy in the system, dSe is the increase

of entropy through interaction with surroundings, dSi is the increase entropy
change occurs inside the system.

Assume it a reversible process, i.e. diS = 0, then:

dE = TdSm +
1

ρ
σijdeij (11)

where dQ = TρdSm and dSm is the specific entropy(entropy per unit mass).
Now we can define the the strain energy function W such that ∂W

∂eij
= σij .

First, we introduce the internal energy in an isentropic process:

dE = TdSm +
1

ρ
σijdeij

=

(
∂E
∂Sm

)
dSm +

(
∂E
∂eij

)
deij (12)

then: 
σij = ρ

(
∂E
∂eij

)
T =

∂E
∂Sm

(13)

here we assume the density ρ a constant because the infinitesimal deformation
is applied slowly.

Second, we introduce the Helmholtz’s free energy function F for isothermal
process(T is constant):

F ≡ E − TSm (14)
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then:

dF ≡ dE − d(TSm)

= TdSm +
1

ρ
σijdeij − TdSm − SmdT

= −SmdT +
1

ρ
σijdeij

=

(
∂F
∂T

)
dT +

(
∂F
∂eij

)
deij (15)

then: 
σij = ρ

(
∂F
∂eij

)
−Sm =

∂F
∂T

(16)

This is the Helmholtz’s free energy function-stress relation in the isothermal
process.

internal energy E Helmholtz’s free energy F
σij = ρ

(
∂E
∂eij

)
σij = ρ

(
∂F
∂eij

)
T = E

∂Sm
Sm = −∂F∂T

Table 1: The Comparison between the internal energy-stress relation and the
free energy-stress relation

Table above is the comparison between the free energy under isothermal pro-
cess and internal energy under isentropic process and the strain energy function
W could be defined as:

W ≡ ρE (17)

or:
W ≡ ρF (18)

the form of strain energy function depends on the thermal process introduced.
Although the relations derived above seems straightforward and the results

are pleasingly simple in the first glimpse, there exists some unreasonable make-
up-like trick and vague part if we have a deep insight of the interior into the
definitions on every term.

2.2 The Deeper Insight into The Procedure

As mentioned in the last paragraph, there exists some vague parts needing some
more discussion:
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1. The definition of ”particle”:

In most textbooks of continuum mechanics or solid mechanics, when
it comes to the element composition of material, the ”particle” is usually
simply mentioned and defined vaguely as a part of the material of interest.
It seems not a big issue when the focus is on the behaviour under the
length scale of macro-continuum. However, in the time being we want to
look deeply into the interior and compute the elasticity properties through
thermodynamics, so we have to find out a more rigorous interpretation of
”particle”.

2. The ”velocity” related to the body and surface element:

The power in which body force Fi exerts on the ”particle” and the taction
Ti exerts on the surface element da in equation-4 raises some questions:
why the velocities of body element and surface element are regarded as
the same? It seems more reasonable to separate the two parts apart and
discuss respectively.

3. The formulation of kinetic energy(equation-1):

According to the last two items discussed above, the kinetic energy is
no longer only dependent on one velocity and one density. At least, we
have to sperate it into two parts: the body and the surface.

Due to the reasons mentioned above, it is necessary to make some postulates
and modify the derivation from the last subsection:

1. The definition of particle:

Since we want to start from the molecular dynamics to get the macro-
continuum properties, basically we might postulate the ”particles” to be
the ”molecules”(or in the case of metal: atoms) as the smallest unit which
compose the material.

2. The kinetic energy :

Km ≡
∫
V1

1

2
ρBvBi v

B
i dV +

∫
V2

1

2
ρSvSi v

S
i dV (19)

The superscript B stands for the part deeply inside the ”body” in the
material and S stands for the ”surface” part in the point of view of clas-
sical continuum mechanics but now we consider it as another volume re-
gion, since we want to derive the kinetic energy starting from the scale of
molecule.

3. The power :

The original power in which body force Fi and traction Ti exert on the
material is accompanied with the same ”velocity” and finally result in the
last form of the equation-8 through continuity equations.
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Figure 1: The scheme of the modified kinetic energy. V is the body volume and
S the surface in the classical continuum mechanics. V1 is the counterpart of V
and V2 is the one of S

Now we want to modify it into a separated form of V1 and V2:

Pm ≡
∫
V1

Fiv
B
i dV +

∫
S

Tiv
S
i da

=

∫
V1

Fiv
B
i dV +

∫
S

(σijnj)v
S
i da

=

∫
V1

Fiv
B
i dV +

∫
V2

(σijv
S
i ),jdV (20)

Then apply the first law of thermodynamics: K̇m + Ė = Pm + Q̇ and
derive the condition similar to equation-6 in the same manner :

1

2
ρ
D(vBi v

B
i )

Dt
+

1

2
(vBi v

B
i )
Dρ

Dt
+

1

2
(vBi v

B
i )ρvBj,j

+
1

2
ρ
D(vSi v

S
i )

Dt
+

1

2
(vSi v

S
i )
Dρ

Dt
+

1

2
(vSi v

S
i )ρvSj,j

+ρ
DE
Dt

+ EDρ
Dt

+ Eρvj,j

= Fiv
B
i

∣∣
V1

+ (σij,jv
S
i + σijv

S
i,j)
∣∣
V2
− hj,j (21)

And since:

1

2
ρ
D(vBi v

B
i )

Dt
= vBi ρ

DvBi
Dt

= [Fiv
B
i + σij,jv

B
i ]
∣∣
V1

(22)
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1

2
ρ
D(vSi v

S
i )

Dt
= vSi ρ

DvSi
Dt

= [Fiv
S
i + σij,jv

S
i ]
∣∣
V2

(23)

then:

ρ
DE
Dt

= [−FivSi + σijv
S
i,j ]
∣∣
V2
− σij,jv

B
i

∣∣
V1
− hj,j (24)

We put the slowly-imposed strain conditions like equation-9:

ρdE = (Fidu
S
i + σijde

S
ij)
∣∣
V2
− σij,jdu

B
i

∣∣
V1

+ dQ (25)

3 The Derivation of Elasticity Properties

To derive the elastic properties, we plan to go through the following procedures:

1. Induce deformation:

In the gauge section, we have the material undergoing a deformation from
the zero-state in the specified direction, compute the change of internal
energy, and make the derivative of it to obtain the corresponding stress.

Figure 2: The deformation from the zero-strain state to the strained state in
different directions.
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2. Derive the Elasticity Properties:

With the strain we obtain through the set deformation and the stress
we get from the internal energy derivative in the specified direction, we
could eventually get the elasticity modulus Cijkl:

σij = Cijklekl (26)

Here we only show the linear form of the elasticity modulus.

4 Example: The Linear, homogeneous, and Isotropic
Material Properties Computing

In this section, we plan to derive the case of linear, homogeneous, and isotropic
elasticity properties since:

1. Fewer independent variables:

In such case, there only exist two independent variables: the first Lame
constant λ and the second Lame constant µ, and we could examine all
other properties through them.

E ν K
Young’s modulus Poisson ratio bulk modulus

µ, λ µ(3λ+2µ)
λ+µ

λ
2(λ+µ)

3λ+2µ
3

Table 2: The elasticity properties under the assumption of linear, homogenous,
and isotropic material.

2. Preparing for the anisotropic case:

Thanks to the isotropic assumption helping us check the thermodynamics
method work well, we could be safe to go further to the anisotropic case.

4.1 The Material Selected: Tungsten, Molybdenum,and
Aluminum

From E-µ relation ,we could see that for the isotopic material:

E = 2µ(1 + ν) (27)

So, the ratio A could be regarded as a standard of anisotropic properties:

A =
2µ(1 + ν)

E
(28)

The closer A is to 1, the more isotropic the material is. In our selections,
the A of tungsten is 1.01, aluminum is 1.22, and molybdenum is 0.91.5

5The needed elasticity properties is derived from wikipedia.
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4.2 Example: Computing the First Lame Constant λ

The stress-strain relation for isotropic material is:

σij = λekkδij + 2µeij , i, j = 1, 2, 3 (29)

Figure 3: The scheme of deformation

Figure 4: The scheme of deformation

When we apply the deformation in the simulation through x1, the strain in
the x1 direction could be directly obtained and the strain through x2 and x3
could also be derived if we set the conservation of mass condition.

Then:
σ11 = (λ+ 2µ)e11 + λ(e22 + e33) (30)
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And for the shear case:
σ12 = 2µe12 (31)

We obtain the stress through the derivative of internal energy and the strain
due to our setting, and finally we could solve λ and µ as a system of linear
equations.

4.3 The Use of Material Studio

The key point of our computation for the internal energy of material under
deformation requires the software Material Studio. We have to do the simulation
to obtain the thermodynamics properties using the Molecular Dynamics Module
attached to the software. That’s why we are applying the use of such software.
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