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High-resolution simulations of cylindrical
gravity currents in a rotating system
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Cylindrical gravity currents, produced by a full-depth lock release, in a rotating
system are investigated by means of three-dimensional high-resolution simulations of
the incompressible variable-density Navier–Stokes equations with the Coriolis term
and using the Boussinesq approximation for a small density difference. Here, the
depth of the fluid is chosen to be the same as the radius of the cylindrical lock
and the ambient fluid is non-stratified. Our attention is focused on the situation
when the ratio of Coriolis to inertia forces is not large, namely 0.1 6 C 6 0.3, and
the non-rotating case, namely C = 0, is also briefly considered. The simulations
reproduce the major features observed in the laboratory and provide more detailed
flow information. After the heavy fluid contained in a cylindrical lock is released
in a rotating system, the influence of the Coriolis effects is not significant during
the initial one-tenth of a revolution of the system. During the initial one-tenth of a
revolution of the system, Kelvin–Helmholtz vortices form and the rotating cylindrical
gravity currents maintain nearly perfect axisymmetry. Afterwards, three-dimensionality
of the flow quickly develops and the outer rim of the spreading heavy fluid breaks
away from the body of the current, which gives rise to the maximum dissipation rate
in the system during the entire adjustment process. The detached outer rim of heavy
fluid then continues to propagate outward until a maximum radius of propagation is
attained. The body of the current exhibits a complex contraction–relaxation motion
and new outwardly propagating pulses form regularly in a period slightly less than
half-revolution of the system. Depending on the ratio of Coriolis to inertia forces,
such a contraction–relaxation motion may be initiated after or before the attainment
of a maximum radius of propagation. In the contraction–relaxation motion of the
heavy fluid, energy is transformed between potential energy and kinetic energy, while
it is mainly the kinetic energy that is consumed by the dissipation. As a new pulse
initially propagates outward, the potential energy in the system increases at the
expense of decreasing kinetic energy, until a local maximum of potential energy
is reached. During the latter part of the new pulse propagation, the kinetic energy
in the system increases at the expense of decreasing potential energy, until a local
minimum of potential energy is reached and another new pulse takes form. With
the use of three-dimensional high-resolution simulations, the lobe-and-cleft structure
at the advancing front can be clearly observed. The number of lobes is maintained
only for a limited period of time before merger between existing lobes occurs when
a maximum radius of propagation is approached. The high-resolution simulations
complement the existing shallow-water formulation, which accurately predicts many
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72 A. Dai and C.-S. Wu

important features and provides insights for rotating cylindrical gravity currents with
good physical assumptions and simple mathematical models.

Key words: geophysical and geological flows, gravity currents

1. Introduction
Gravity currents, also known as buoyancy or density currents, occur whenever fluid

of one density flows primarily horizontally into fluid of a different density (Huppert
2006). The density difference between the fluids, which provides the driving force
behind such flows, may be attributed to a number of factors, including temperature
differentials, dissolved materials and suspended sediments. The readers are referred to
Allen (1985) and Simpson (1997) for a comprehensive introduction to this topic in a
variety of geophysical and industrial situations.

In the literature, a large number of laboratory experiments have been performed for
such flows in a channel and the flows are confined between parallel lateral walls. A
barrier is typically placed inside the channel, where two sides of the barrier are filled
with fluids of different densities. Removal of the barrier then sets the two fluids into
motion. This type of experiment, i.e. lock-exchange flow, serves as a model for studies
of many geophysical and industrial flows and has drawn the most attention. If viscous
effects due to the lateral walls can be ignored, the gravity currents produced in such
an experimental set-up propagate as a statistically two-dimensional flow, also known
as planar gravity currents. The dynamics of planar gravity currents is comparatively
well understood, with the help of laboratory experiments (e.g. Huppert & Simpson
1980; Shin, Dalziel & Linden 2004; Marino, Thomas & Linden 2005; La Rocca
et al. 2008; Adduce, Sciortino & Proietti 2012; Dai 2013, 2014; Lombardi et al.
2015; Ottolenghi et al. 2016a,b) and numerical simulations (e.g. Härtel, Meiburg
& Necker 2000b; Cantero et al. 2007b; La Rocca et al. 2012a,b; Dai 2015; Dai
& Huang 2016). The planar gravity currents produced by lock exchange may go
through three distinct phases of spreading in sequence, namely the slumping, inertial
and viscous phases, and the spatio-temporal evolution of planar gravity currents is
well documented in these references, to mention but a few.

There are a number of geophysical and industrial situations in which the
gravity currents are not constrained by lateral walls but are allowed to spread
out radially over the entire horizontal plane. In such situations, the gravity currents
propagate as a statistically axisymmetric flow, also known as cylindrical gravity
currents. Experimental and computational investigations of cylindrical gravity
currents are comparatively limited (Huppert & Simpson 1980; Bonnecaze et al.
1995; Alahyari & Longmire 1996; Hallworth et al. 1996; Huq 1996; Ungarish
& Zemach 2005; Patterson et al. 2006; Ross, Dalziel & Linden 2006; Cantero,
Balachandar & Garcia 2007a; Ungarish 2007; Ungarish & Huppert 2008; Ungarish
2010). For cylindrical gravity currents, as demonstrated by Ungarish (2007), the
propagation is first dominated by the inertial–buoyancy balance, during which
slumping and then self-similar stages occur; then a transition to the viscous–buoyancy
balance phase occurs, in which a different self-similar motion develops. With
the help of high-resolution simulations, Cantero et al. (2007a) observed that the
Kelvin–Helmholtz vortices occur only during the slumping phase and the wavelength
of the lobes grows, while the number of lobes around the circumference is maintained,
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Rotating cylindrical gravity currents 73

as the flow spreads. For non-rotating cylindrical gravity currents, the radius of the
current R̃ as a function of time t̃ follows

R̃≈ 1.16(g̃′0Ṽ0)
1/4

t̃1/2 or
R̃

R̃0
≈ 1.16π1/4 g̃′1/40 H̃1/4

R̃1/2
0

t̃1/2, (1.1a,b)

for the self-similar motion in the inertial–buoyancy balance phase and

R̃≈ 0.779(g̃′0Ṽ3
0/ν)

1/8
t̃1/8, (1.2)

for the viscous–buoyancy balance phase (Huppert & Simpson 1980; Huppert 1982),
where g̃′0 is the reduced gravity, Ṽ0 = πR̃2

0H̃ is the volume of heavy fluid in the
cylindrical lock, R̃0 is the radius of the cylindrical lock, H̃ is the depth of heavy fluid
and ν is the kinematic viscosity of the heavy fluid.

In other large-scale geophysical situations, the influence of the Coriolis force due
to the Earth’s rotation will definitely play a major role in the propagation of gravity
currents (Griffiths 1986). A notable example, related to the present investigation, is the
oceanographic structure called a warm or cold core ‘ring’, ‘vortex’ or ‘lens’ (Saunders
1973; Csanady 1979; Flierl 1979; Killworth 1992; Rubino & Brandt 2003; Stegner,
Bouruet-Aubertot & Pichon 2004; Sutyrin 2006). A ‘ring’ in the ocean is a flow
structure associated with an isolated mass of anomalous water, significantly warmer or
colder, saltier or fresher than its surroundings. It is known that unstable meanders of
the Gulf Stream and of the Kuroshio can inject a parcel of water of one density into
surroundings of a different density, and the parcel becomes an isolated ‘ring’ when a
geostrophic equilibrium is established.

In the laboratory, such flows are modelled by releasing cylindrical gravity currents
on a rotating turntable. For cylindrical gravity currents generated from a full-depth
cylindrical lock release in a rotating system, the ratio of Coriolis to inertia forces,
i.e.

C = Ω̃R̃0√
g̃′0H̃

, (1.3)

is the most important parameter, where Ω̃ is the angular velocity of the rotating
system, R̃0 is the radius of the cylindrical lock, H̃ is the depth of fluid and g̃′0 is the
reduced gravity. Here the ratio of Coriolis to inertia forces is related to the Rossby

number, i.e. Ro=
√

g̃′0H̃/(2Ω̃R̃0), via Ro= 1/(2C) and is also related to the ratio of

the radius of the cylindrical lock, R̃0, to the deformation radius, R̃d =
√

g̃′0H̃/(2Ω̃),

via C = R̃0/(2R̃d). In other words, the ratio of Coriolis to inertia forces is related to
the Burger number, i.e. Bu = R̃2

d/R̃
2
0, via Bu = 1/(4C2) (e.g. Rubino & Brandt 2003;

Stegner et al. 2004). In the experiments of Saunders (1973), the heavy fluid is placed
inside the cylindrical lock to the same depth of and surrounded by light ambient
fluid so the vortex is formed on the bottom once the lock is removed. Saunders
(1973) reported that the ‘bottom vortex’ is stable when C 6 0.37. Under the condition
when C > 0.37, the ‘bottom vortex’ exhibits unstable azimuthal waves, which grow to
an amplitude such that they become cutoff distinct circulations, i.e. vortex splitting
occurs. The number of amplifying waves and hence vortices is dependent solely on
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74 A. Dai and C.-S. Wu

the ratio of Coriolis to inertia forces. It was also confirmed by Saunders (1973) that
the aspect ratio of the cylindrical lock, R̃0H̃−1, has an unnoticed influence on the
results. In contrast, Griffiths & Linden (1981) performed experiments in which fluid
inside the cylindrical lock is less dense than the environment so the vortex is formed
at the free surface rather than on the bottom. However, the ‘surface vortex’ is always
unstable, even when C 6 0.37. Griffiths & Linden (1981) attributed the stability of
the ‘bottom vortex’ to the action of the viscous Ekman layer at the bottom.

For stable cylindrical gravity currents in a rotating system, i.e. ‘bottom vortex’ when
C 6 0.37, Ungarish & Huppert (1998) and Hallworth, Huppert & Ungarish (2001)
investigated the problem using laboratory experiments, shallow-water formulation and
finite-difference numerical solutions of the axisymmetric Navier–Stokes equations.
It was found that Coriolis effects are negligible during the initial one-tenth of a
revolution of the system following the release of the heavy fluid. A major feature
of rotating cylindrical gravity currents was the attainment of a maximum radius
of propagation. The maximum radius of rotating cylindrical gravity currents, as a
function of the ratio of Coriolis to inertia forces, follows

R̃max ≈ 1.6C−1/2R̃0, (1.4)

for C� 1 (Ungarish & Huppert 1999). A maximum radius of propagation is reached
in less than half of a revolution of the system. Thereafter a contraction–relaxation
motion in the body of heavy fluid and a regular series of outwardly propagating
pulses were observed. These features in rotating cylindrical gravity currents have
no counterparts in non-rotating situations. However, it should be recognized that
the rotating experiments are expensive, time consuming and there exist technical
difficulties in obtaining detailed information in space and time about the density and
velocity fields. The shallow-water formulation can correctly capture the pulse period
and several other dynamical behaviours if C is not too small, e.g. C ≈ 3.54 in Rubino
& Brandt (2003). For C � 1, the shallow-water formulation for rotating cylindrical
gravity currents predicts quite well the gravity current shape development, the change
from positive to negative radial velocity during propagation, the time of attainment
of the maximum radius, the development of the retrograde azimuthal velocity in
the current and more (Ungarish & Huppert 1998; Hallworth et al. 2001). However,
the shallow-water formulation does not repeatedly capture the contraction–relaxation
motion for C � 1, nor does it provide detailed three-dimensional information and
small-scale structures in the flow field.

Numerical solutions of the axisymmetric Navier–Stokes equations capture more
details of the flow field but, unfortunately, the contraction–relaxation motion cannot
be faithfully reproduced in this manner either. Furthermore, it should be kept in
mind that axisymmetric solutions, which ignore the variations in the azimuthal
direction, are incompatible with some of the complex features in real cylindrical
gravity currents, e.g. the lobe-and-cleft structure. The variations in the flow field in
the azimuthal direction, along with those in other directions, must be captured by
means of three-dimensional high-resolution simulations without imposed axisymmetry
conditions.

This study aims at investigating the dynamical processes in the formation of stable
cylindrical gravity currents, by a full-depth lock release in a rotating system. Our
focus is on the situation when the ratio of Coriolis to inertia forces is not large
and, specifically, C = 0.1, 0.2, 0.3 are considered in this study. Since our intent is to
provide detailed information in space and time about the density and velocity fields
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Rotating cylindrical gravity currents 75

FIGURE 1. Sketch of the initial condition for a cylindrical gravity current, produced by a
full-depth lock release, in a rotating system. At t= 0, heavy fluid of density ρ̃1 is confined
in the cylindrical lock, of which the radius is R̃0 = H̃. Outside the cylindrical lock is the
light ambient fluid of density ρ̃0. Before the heavy fluid is released from the lock, the
system is in solid-body rotation with constant angular velocity Ω̃ about the vertical axis
x3. Removal of the cylindrical lock sets the quiescent fluid, observed in the rotating frame,
into motion.

in rotating cylindrical gravity currents, the investigation is conducted by means of
three-dimensional high-resolution simulations of the incompressible variable-density
Navier–Stokes equations with the Coriolis term. With the detailed information in
the flow field, qualitative and quantitative measures for the dynamical processes in
the formation of stable rotating cylindrical gravity currents are now shown more
clearly for the first time. In § 2, we describe the formulation of the problem and
the numerical procedure. The qualitative and quantitative results are presented in § 3.
Finally, conclusions are drawn in § 4.

2. Formulation
Figure 1 gives a sketch of the configuration for simulations of cylindrical gravity

currents produced by a full-depth lock release in a rotating system. The heavy fluid of
density ρ̃1 is confined in the cylindrical lock region of radius R̃0 and filled to the same
depth H̃ as the light ambient fluid outside the cylindrical lock region. The density
of the light ambient fluid is ρ̃0. Here the radius of the cylindrical lock is chosen
the same as the depth of fluid, i.e. R̃0 = H̃. Before the release of heavy fluid, the
system of heavy fluid and light ambient fluid is in solid-body rotation with constant
angular velocity Ω̃ about the vertical axis x3 with a gravitational acceleration in the
antiparallel direction of x3. Here we adopt the Boussinesq approximation, in that the
density difference, (ρ̃1− ρ̃0), is assumed sufficiently small compared with the reference
density ρ̃0 such that the influence of density variations is retained only in the buoyancy
term but neglected in the inertia and diffusion terms. Consequently, the governing
equations take the form, using tensor notation,

∂uk

∂xk
= 0, (2.1)

∂ui

∂t
+ ∂(uiuk)

∂xk
= ρeg

i −
∂p
∂xi
− 2CR−1

0 εijkeΩj uk + 1
Re

∂2ui

∂xk∂xk
, (2.2)

∂ρ

∂t
+ ∂(ρuk)

∂xk
= 1

Pe
∂2ρ

∂xk∂xk
. (2.3)
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76 A. Dai and C.-S. Wu

Here ui denotes the velocity, ρ the density, eg
i the unit vector in the direction of

gravity, eΩj the unit vector in the direction of rotation, p the pressure and εijk the
Levi-Civita symbol. Please note that the centrifugal term, which can be written as
the gradient of a scalar, is combined with the pressure term in (2.2) without loss of
generality. The set of (2.1)–(2.3) is made dimensionless by the lock height, H̃, as the
length scale and the buoyancy velocity

ũb =
√

g̃′0H̃ with g̃′0 = g̃
ρ̃1 − ρ̃0

ρ̃0
, (2.4)

as the velocity scale. Since the radius of the cylindrical lock is set to be the same
as the depth of fluid, the dimensionless radius of the lock is unity, i.e. R0 = 1. The
dimensionless density, i.e. the concentration of fluid mixture, is given by

ρ = ρ̃ − ρ̃0

ρ̃1 − ρ̃0
. (2.5)

The relevant dimensionless parameters are the ratio of Coriolis to inertia forces,
defined by (1.3), the Reynolds number Re and the Péclet number Pe, defined by

Re= ũbH̃
ν̃

and Pe= ũbH̃
κ̃
, (2.6a,b)

respectively. The two fluids are assumed to have identical kinematic viscosities ν̃ and
diffusion coefficients κ̃ . They are related by the Schmidt number

Sc= ν̃
κ̃
, (2.7)

which represents the ratio of the kinematic viscosity to molecular diffusivity. Typically
in saline experiments, Sc ≈ 700, but it has been observed by many researchers
(e.g. Härtel et al. 2000b; Necker et al. 2005; Cantero et al. 2007b; Bonometti &
Balachandar 2008) that the influence of Schmidt number on the dynamics of the
gravity current is weak as long as Sc≈O(1) or larger. Therefore we follow suit here
and employ Sc= 1 in the simulations. The Ekman number, which expresses the ratio
of viscous to Coriolis forces, is defined as

E= ν̃

Ω̃H̃2
, (2.8)

which can also be expressed in terms of the previous parameters by E= R0(CRe)−1.
The set of equations in the velocity–pressure formulation is solved with resolution

Nx1 × Nx2 × Nx3 . The length is non-dimensionalized by the lock height, H̃, and the
flow domain is Lx1 ×Lx2 ×Lx3 = 15× 15× 1 in order to allow unhindered development
of the rotating cylindrical gravity currents. Fourier expansion with periodic boundary
condition is employed in the horizontal directions, i.e. x1 and x2. Chebyshev expansion
with Gauss–Lobatto quadrature points is employed in the wall-normal direction, i.e.
x3. The Gauss–Lobatto quadrature points provide a straightforward implementation of
boundary conditions and have high resolution near the walls. As argued by Hallworth
et al. (2001), the free surface deviates from the horizontal but neglecting such a
deviation is justified for small density contrast between heavy and light ambient fluids

at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/jfm.2016.598
Downloaded from http:/www.cambridge.org/core. National Taiwan University Library, on 01 Oct 2016 at 07:54:05, subject to the Cambridge Core terms of use, available

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/jfm.2016.598
http:/www.cambridge.org/core


Rotating cylindrical gravity currents 77

and for small ratio of Coriolis to inertia forces. Following previous experimental and
numerical investigations of rotating cylindrical gravity currents (Ungarish & Huppert
1998; Hallworth et al. 2001), we employ no-slip and no-stress conditions for the
velocity field at the bottom and top boundaries, respectively, and a no-flux condition
for the density field at the bottom and top boundaries. The influence of periodic
boundary condition in the horizontal directions will not be discussed here since
previous computational investigations have shown that the interaction of the gravity
currents with the boundary becomes important only when the front reaches within
one depth scale of the boundary for the planar case (Härtel et al. 2000b) and is even
less significant for the cylindrical case (Cantero et al. 2006).

The flow field is advanced in time by the low-storage third-order Runge–Kutta
scheme (Williamson 1980). The convection, buoyancy and Coriolis terms are treated
explicitly while the diffusion terms are treated implicitly with a Crank–Nicolson
scheme. To reduce the aliasing error, the Arakawa method (Durran 1999) is used to
evaluate the convection term alternately between divergence and convective forms.
The de-aliased pseudospectral code has been employed in Cantero et al. (2007a,b) for
lock-exchange flows and in Dai et al. (2012), Dai (2013, 2015) for gravity currents
down sloping boundaries. In all simulations, the velocity field was initialized with
quiescent conditions everywhere. The initial density field is prescribed unity in the
heavy fluid region and zero elsewhere with a smooth error-function-type transition
in the interface region (Härtel, Michaud & Stein 1997). With increasing Re the
complexity and the required resolution increase. To resolve the flow structures of
the gravity currents in the flow domain, adequate resolution requires a grid size of
1x1 ≈ (ReSc)−1/2 in the horizontal directions. In this work, five different Reynolds
numbers are considered: Re = 500, 1000, 2000, 4000 and 8000. The grid employed
for Re= 500 and 1000 is Nx1 × Nx2 × Nx3 = 308× 308× 84, the grid for Re= 2000
and 4000 is 768× 768× 128 and the grid for Re= 8000 is 880× 880× 180 and thus
the grids involve 7.97, 67.8 and 139.4 million grid points, respectively. The time step
was chosen to produce a Courant number less than 0.5.

3. Results
3.1. Non-rotating cylindrical gravity currents

We begin by presenting the results for cylindrical gravity currents produced by
a full-depth lock release in a non-rotating system, i.e. C = 0. There have been a
number of investigations of non-rotating cylindrical gravity currents, however, it is
still desirable to begin with this case in order to make a comparison with the rotating
cylindrical gravity currents in the following section and also to validate our simulation
procedures.

Figure 1 shows a side view of the initial configuration of the cylindrical gravity
currents. After the removal of the lock, a cylindrical gravity current, which propagates
radially outward across the bottom boundary, is produced. Figure 2 shows one-quarter
of the cylindrical gravity current at C = 0 and Re = 4000 visualized by a density
isosurface of ρ = 0.15. Alternatively, the propagation of gravity currents can be
observed using quantities averaged in the wall-normal and in the azimuthal directions.
For any flow variable f , its average in the wall-normal direction is

f̂ (x1, x2)=
∫ 1

0
f (x1, x2, x3) dx3, (3.1)
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FIGURE 2. Cylindrical gravity current at C = 0 and Re= 4000 visualized in one quadrant
of the computational domain by the isosurface of ρ= 0.15. For illustrative purposes, time
instances are chosen at t= 3.14, 9.42 (a,b). Density contours are also shown by solid lines
in the (x1, x3) plane.

and its average in the azimuthal direction is

f̄ (r, x3)= 1
2π

∫ 2π

0
f (r, θ, x3) dθ, (3.2)

where (r, θ, x3) is converted from (x1, x2, x3) in a consistent way as the velocity in
cylindrical coordinates (ur, uθ , u3) is converted from (u1, u2, u3).

Figure 3 shows the density averaged in the wall-normal direction and figure 4
shows the density and velocity averaged in the azimuthal direction at different time
instances for a non-rotating cylindrical gravity current at Re= 4000. Initially after the
heavy fluid is released, the non-rotating cylindrical gravity current evolves as a nearly
axisymmetric flow in which Kelvin–Helmholtz vortices develop along the front and
body of the current. On propagating further outwards, the cylindrical gravity current
acquires a characteristic shape which consists of a raised, bulbous front followed by
a much thinner body of the current. It is known from Cantero et al. (2007a) that, for
sufficiently high Reynolds numbers, the non-rotating cylindrical gravity currents are
only ‘statistically’ axisymmetric, especially after the slumping phase, in that variations
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FIGURE 3. Cylindrical gravity current at C = 0 and Re= 4000 visualized by the density
averaged in the wall-normal direction, i.e. ρ̂(x1, x2), plotted on the (x1, x2) plane. For
illustrative purposes, time instances are chosen at t= 3.14, 6.44, 9.42, 11.66 (a–d).

in the azimuthal direction are observed, e.g. the lobe-and-cleft structure; otherwise, for
sufficiently low Reynolds numbers, the produced cylindrical gravity currents exhibit
perfect axisymmetry. For non-rotating cylindrical gravity currents, we performed
simulations only for the case of Re= 4000 for validation and comparison purposes. It
has been observed by Cantero et al. (2007a) that, for non-rotating cylindrical gravity
currents, the number of Kelvin–Helmholtz vortices increases with increasing Reynolds
numbers.

Figure 5 shows a log–log plot of the front location as a function of time for
simulation results, shallow-water predictions and experimental data from Hallworth
et al. (2001). It should be noted that the Reynolds number in the experiments of
Hallworth et al. (2001) is Re≈ O(105), which is significantly larger than Re= 4000
in the corresponding simulations for the non-rotating cylindrical gravity currents.
Nevertheless, the simulation results show good agreement with the experimental data
and with the theoretical relationship (1.1). It is worth noting that the shallow-water
predictions for the non-rotating cylindrical gravity current seem to be in better
agreement with the experiment than the solid line.
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FIGURE 4. Cylindrical gravity current at C = 0 and Re= 4000 visualized by the density
and velocity averaged in the azimuthal direction, i.e. ρ̄(r, x3), ūr(r, x3) and ū3(r, x3), plotted
on the (r, x3) plane. For illustrative purposes, time instances are chosen at t= 3.14, 6.44,
9.42, 11.66 (a–d). Density contours are shown by the solid lines and velocity is shown
by the vector field on the (r, x3) plane.

3.2. Rotating cylindrical gravity currents
For rotating cylindrical gravity currents produced by a full-depth lock release, we
focus attention on the situation when the ratio of Coriolis to inertia forces is not
large. Three different ratios of Coriolis to inertia forces are considered in this
study, namely C = 0.1, 0.2, 0.3. These rotating cylindrical gravity currents exhibit
special features, including a maximum radius of propagation and a regular series
of outwardly propagating pulses, that are qualitatively distinct from the non-rotating
cylindrical gravity currents. Since the flow patterns among the rotating cases are
qualitatively similar, we present the detailed flow information only for the case of
C = 0.2 and other details for C = 0.1, 0.3 are omitted for brevity.

Figure 6 shows one-quarter of the cylindrical gravity current at C = 0.2 and Re=
4000 visualized by a density isosurface of ρ = 0.15. Before the lock is removed,
the system is in solid-body rotation and both heavy and light fluids are quiescent in
the rotating frame of reference. Initially after the heavy fluid is released, the rotating
cylindrical gravity current collapses in a similar way as the non-rotating cylindrical
gravity current in that the flow spreads radially outward axisymmetrically with Kelvin–
Helmholtz vortices developing along the front and body of the current. However, as
the rotating cylindrical gravity current propagates further outward, striking differences
from the non-rotating case emerge. The rotating cylindrical gravity current maintains
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FIGURE 5. Radius of the advancing front of the cylindrical gravity current at C = 0 as
a function of time. The radius is normalized by R̃0 and time is normalized by H̃ũ−1

b .
Reynolds number is chosen at Re = 4000 in the simulation and at Re ≈ O(105) in
the experiments. Simulation results (A) are compared with the experimental data (@) of
Hallworth et al. (2001), with the shallow-water predictions of Ungarish (2007), represented
by the dashed line and with the theoretical relationship (1.1), represented by the straight
solid line.

a core region of heavy fluid at the centre of rotation and the body of the current
is no longer thin compared with the front. It is worth noting here that for a full-
depth lock release in a rotating system, the observed core region of heavy fluid at
the centre of rotation confirms the observation of a ‘point of surface contact’ for
rotating cylindrical gravity currents produced from a full-depth lock release in the
laboratory (Saunders 1973; Dewar & Killworth 1990) but we should keep in mind
that only a small portion of heavy fluid is contained in this region (Ungarish 2009).
Conservation of angular momentum requires acceleration in the tangential velocity of
a fluid of which the radius decreases and deceleration of a fluid of which the radius
increases. Therefore, in the rotating frame of reference, with the system rotating in the
clockwise direction, the contracting fluid acquires a counterclockwise rotation while
the expanding fluid acquires a clockwise rotation. For a partial-depth lock release, as
demonstrated by Hallworth et al. (2001), such a core region of heavy fluid at the
centre does not appear. From the comparison between figures 2 and 6, it is observed
that the Coriolis effects modify the profile of the cylindrical gravity current from one
which has the front as the most prominent feature of the current with a much thinner
body to another of which the thickness of the current decreases in the radially outward
direction. The difference in the front location between figures 2 and 6 may not be very
easily visualized but the radius of the front versus time, as plotted in figure 10, shows
a sensible difference between the non-rotating and rotating cases when Ωt/2π& 0.2.

In order to better understand the dynamical processes in the propagation, figure 7
shows the density averaged in the wall-normal direction and figures 8 and 9 show the
density and velocity averaged in the azimuthal direction at different time instances for
a cylindrical gravity current at C = 0.2 and Re= 4000. Prior to t≈ 3.14 or Ωt/2π≈
0.10, both non-rotating and rotating cylindrical gravity currents exhibit nearly perfect
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FIGURE 6. Cylindrical gravity current at C=0.2 and Re=4000 visualized in one quadrant
of the computational domain by the isosurface of ρ= 0.15. For illustrative purposes, time
instances are chosen at t = 3.14, 9.42 (a,b), which correspond to Ωt/2π ≈ 0.10, 0.30,
respectively. Density contours are also shown by solid lines in the (x1, x3) plane.

axisymmetry in flow patterns and the Kelvin–Helmholtz vortices along the front and
body of the current do not undergo bending and tilting processes at this stage of flow.
As the rotating cylindrical gravity current propagates further outward, at t ≈ 6.44 or
Ωt/2π≈ 0.20, the outer rim of the spreading heavy fluid breaks away from the body
of the current. The detached outer rim of heavy fluid continues to move outward but
decelerates rapidly until a maximum radius of propagation is attained, at t ≈ 11.66
or Ωt/2π≈ 0.37. The determination of the maximum radius of propagation requires
a subjective judgement by viewing the movies of density and velocity fields, since
the decelerating heavy fluid stagnates and gently diffuses around the maximum radius
of propagation. Our observation agrees faithfully with the laboratory experiments by
Hallworth et al. (2001), who reported that a residue of heavy fluid sticks around the
maximum radius of propagation of which the position becomes ambiguous. The time
at which rotating cylindrical gravity currents attain a maximum radius of propagation,
Tmax, is found to depend on the ratio of Coriolis to inertia forces. As will be shown in
figure 10, a maximum radius is attained at ΩTmax/2π≈ 0.25 for the case of C = 0.1
and Re= 4000 and at ΩTmax/2π≈ 0.45 for the case of C = 0.3 and Re= 4000. It is
shown in figure 9 that, before t ≈ 11.66 or Ωt/2π≈ 0.37, the Coriolis effects result
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FIGURE 7. Cylindrical gravity current at C= 0.2 and Re= 4000 visualized by the density
averaged in the wall-normal direction, i.e. ρ̂(x1, x2), plotted on the (x1, x2) plane. Time
instances are chosen at t= 3.14, 6.44, 9.42, 11.66, 16.34, 24.82 (a–f ), which correspond
to Ωt/2π≈ 0.10, 0.20, 0.30, 0.37, 0.52, 0.79, respectively.
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FIGURE 8. Cylindrical gravity current at C= 0.2 and Re= 4000 visualized by the density
and velocity averaged in the azimuthal direction, i.e. ρ̄(r, x3), ūr(r, x3) and ū3(r, x3), plotted
on the (r, x3) plane. For illustrative purposes, time instances are chosen at t= 3.14, 6.44,
9.42, 11.66, 16.34, 24.82 (a–f ), which correspond to Ωt/2π≈ 0.10, 0.20, 0.30, 0.37, 0.52,
0.79, respectively. Density contours are shown by the solid lines, where the thick solid line
represents ρ̄ = 0.01, and velocity is shown by the vector field on the (r, x3) plane. The
dashed boxes at t= 11.66 and 16.34 indicate the leading edge of the new pulse.

in a retrograde azimuthal motion of the spreading heavy fluid, relative to the rotating
system, while the direction of tangential velocity in the core region is concurrent with
the rotating system.

The body of the current begins to contract radially inward toward the centre of
rotation as the advancing front approaches the maximum radius of propagation. The
contraction of the body of the current is a complex rearrangement process of the heavy
fluid. As figures 8 and 9 show at t≈ 11.66 or Ωt/2π≈ 0.37, while the body of the
current contracts radially inward, the heavy fluid in the upper part of the body of the
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FIGURE 9. Cylindrical gravity current at C= 0.2 and Re= 4000 visualized by the density
and tangential velocity averaged in the azimuthal direction, i.e. ρ̄(r, x3) and ūθ (r, x3),
plotted on the (r, x3) plane. For illustrative purposes, time instances are chosen at t= 3.14,
6.44, 9.42, 11.66, 16.34, 24.82 (a–f ), which correspond to Ωt/2π≈ 0.10, 0.20, 0.30, 0.37,
0.52, 0.79, respectively. The thick solid line represents the density contour of ρ̄ = 0.01
and the thin solid (dashed) lines represent counterclockwise (clockwise or retrograde)
tangential velocity across the (r, x3) plane, in the rotating frame of reference.

current near the centre of rotation forms a new pulse at r≈ 1.7 and begins to move
radially outward. The determination of the location of the new pulse requires a careful
interpretation of the density field in conjunction with the velocity field. Here the new
pulse location is determined to be the furthest radial location at which the new pulse
maintains a positive radially outward buoyancy flux. As shown by the dashed box in
figure 8 at t= 11.66 in the range of 1.5. r . 2.1, the heavy fluid of the new pulse in
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FIGURE 10. The radius of the advancing front and the leading edge of subsequent
pulses of rotating cylindrical gravity currents, R, plotted against time in terms of the
fraction of one revolution that the system has rotated through, i.e. Ωt/2π. The radius of
the advancing front and the leading edge of subsequent pulses are non-dimensionalized
by the lock height H̃. The angular velocity of the rotating system and time are
non-dimensionalized by the time scale H̃ũ−1

b . The Reynolds number in the simulations
is chosen at Re= 4000. Results for three different ratios of Coriolis to inertia forces are
presented in (a), C=0.1; (b), C=0.2; (c), C=0.3. Symbols:E, the radius of the advancing
front and the leading edge of subsequent pulses of rotating cylindrical gravity currents;u,
the radius of the front and subsequent pulses while the potential energy in the system
is increasing;6, the radius of the advancing front of the non-rotating cylindrical gravity
current at Re= 4000.

the region of r . 1.7 maintains a positive outward flux while in the region of r & 1.7,
the heavy fluid is contracting and the buoyancy flux is radially inward. Therefore, the
location of the new pulse at t≈ 11.66 in figure 8 is determined to be at r≈ 1.7.

The new pulse near the centre of rotation in the upper part of the body of the
current continues to push outward against the inward contracting heavy fluid, while
the thickness of the current increases in the region where the outward propagating new
pulse and the inward contracting flow converge. At t ≈ 16.34 or Ωt/2π ≈ 0.52, the
new pulse has reached r≈ 2.4, as shown in figures 8 and 9. Here the location of the
new pulse is determined again in the way described above. Afterwards, while the outer
part of the heavy fluid continues propagating radially outward, the inner part of the
heavy fluid close to the centre of rotation contracts radially inward and another new
pulse begins to form at r ≈ 1.8, as shown in figure 8 at t = 24.82 or Ωt/2π≈ 0.79.
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FIGURE 11. The velocity of the advancing front and the leading edge of subsequent
pulses of rotating cylindrical gravity currents, UR, plotted against time in terms of the
fraction of one revolution that the system has rotated through, i.e. Ωt/2π. The velocity
of the advancing front and the leading edge of subsequent pulses are non-dimensionalized
by ũb. The angular velocity of the rotating system and time are non-dimensionalized by
the time scale H̃ũ−1

b . The Reynolds number in the simulations is chosen at Re = 4000.
Results for three different ratios of Coriolis to inertia forces are presented in (a), C= 0.1;
(b), C= 0.2; (c), C= 0.3. Symbols:E, the velocity of the advancing front and the leading
edge of subsequent pulses of rotating cylindrical gravity currents; u, the velocity of the
front and subsequent pulses while the potential energy in the system is increasing.

It is worth noting that the new pulse of heavy fluid does not break away from
the body of the current, which occurs only once before the initial advancing front
approaches the maximum radius of propagation. The contraction–relaxation motion
and the outward propagating new pulses are repeated regularly several times, as
confirmed by experimental observations reported in Hallworth et al. (2001).

The radius and the velocity of the advancing front and the leading edge of
subsequent pulses against time in terms of the fraction of one revolution that
the system has rotated through, i.e. Ωt/2π, for cylindrical gravity currents at
C = 0.1, 0.2, 0.3 and Re = 4000 are plotted in figures 10 and 11, respectively.
The velocity of the front and subsequent pulses are derived from the radius of
the front and pulses via UR = dR/dt. The radius of the advancing front of the
non-rotating cylindrical gravity current at Re= 4000 is also included in figure 10 for
comparison. During the initial one-tenth of a revolution of the system, the Coriolis
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FIGURE 12. The pulse period, in terms of ΩTp/2π, plotted against the ratio of Coriolis
to inertia forces, C, for rotating cylindrical gravity currents. The angular velocity of the
rotating system and time are non-dimensionalized by the time scale H̃ũ−1

b . The variable
ΩTp/2π represents the pulse period in terms of the fraction of one revolution that the
system has rotated through. Symbols:E, results from experiments reported by Hallworth
et al. (2001);p, present simulation results. The Reynolds number in the simulations for
the rotating cylindrical gravity currents is chosen at Re= 4000 and the Reynolds number
in the experiments is at Re ≈ O(105). Solid line represents ΩTp/2π ≈ 0.476 given by
Hallworth et al. (2001).

effects are not significant in terms of the front location history. For rotating cylindrical
gravity currents, the averaged time interval between the arrival of successive fronts,
i.e. the pulse period Tp, can be determined. Figure 12 shows the pulse period, in
terms of ΩTp/2π, against the ratio of Coriolis to inertia forces in the rotating
system. Interestingly, it is observed that the subsequent pulses form and propagate
radially outward in a period slightly less than a half-revolution of the system. Such
an observation is in accordance with Hallworth et al. (2001), who reported that
ΩTp/2π≈ 0.476, and explains that these subsequent pulses are related to the inertial
oscillations in a rotating system, of which the inertial frequency is 2Ω . Figure 13
shows the maximum radius of propagation against the ratio of Coriolis to inertia
forces. The theoretical relationship (1.4) appropriately describes the simulation and
experimental results.

3.3. Energy budgets
From the point of view of energy budgets, the propagation of cylindrical gravity
currents in a rotating system is a conversion process of the potential energy into
kinetic energy and subsequently into dissipation by viscous friction, essentially in a
similar way as non-rotating cylindrical gravity currents but subject to the Coriolis
effects. Information on the energy budgets can be difficult to attain in the experiments
on a rotating turntable. In the literature, such an attempt has been made successfully
in the laboratory by Stegner et al. (2004), who quantify the final energy budget after
an adjustment process with the help of visualization techniques. Energy budgets based
on the shallow-water formulation are also discussed in Ungarish (2009). However, a
complete and time-dependent energy budget is still sought and is now possible thanks

at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/jfm.2016.598
Downloaded from http:/www.cambridge.org/core. National Taiwan University Library, on 01 Oct 2016 at 07:54:05, subject to the Cambridge Core terms of use, available

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/jfm.2016.598
http:/www.cambridge.org/core


Rotating cylindrical gravity currents 89

10–1 100

100

101

FIGURE 13. Maximum radius of propagation, R̃max/R̃0, plotted against the ratio of
Coriolis to inertia forces, C, for rotating cylindrical gravity currents. Symbols:E, results
from experiments reported by Hallworth et al. (2001);p, present simulation results. The
Reynolds number in the simulations for the rotating cylindrical gravity currents is chosen
at Re= 4000 and the Reynolds number in the experiments is at Re≈O(105). Solid line
represents the theoretical prediction (1.4) given by Ungarish & Huppert (1999).

to the three-dimensional high-resolution simulations. In the following we will provide
a computational analysis of the energy budget for rotating cylindrical gravity currents.

The equation for the time derivative of the kinetic energy is obtained by multiplying
the momentum (2.2) by ui, i.e.

D
Dt

(
1
2

uiui

)
=− ∂

∂xi
(pui)+ 2

Re
∂

∂xj
(sijui)− 2

Re
sijsij − ρu3, (3.3)

where D/Dt denotes the material derivative, sij denotes the strain rate tensor, sij =
(ui,j + uj,i)/2 and u3 denotes the velocity component in x3 direction. It is interesting
to note that the Coriolis term in (2.2) vanishes when multiplied by ui and therefore the
energy (3.3) has the same form as that for gravity currents in a non-rotating system.
Integration of (3.3) over the entire flow domain V leads to the evolution equation of
the total kinetic energy Ek, i.e.

dEk

dt
=− 2

Re

∫
V

sijsij dV −
∫
V
ρu3 dV, Ek(t)=

∫
V

1
2

uiui dV, (3.4a,b)

where the divergence terms on the right-hand side of (3.3) vanish after integration.
By weighting the kinetic energy with the dimensionless density, we can associate a
fraction of the kinetic energy with the heavy fluid, i.e.

EkH =
∫
V

1
2
ρuiui dV, (3.5)

and the remainder of the total kinetic energy is associated with the ambient fluid.
When the effects of diffusion in the density field on the potential energy is neglected
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FIGURE 14. The normalized potential energy En
p (@), kinetic energy En

k (C), kinetic energy
associated with heavy fluid En

kH (A) and dissipation rate εn = dEn
d/dt (E) plotted against

time in terms of the fraction of one revolution that the system has rotated through, i.e.
Ωt/2π, for rotating cylindrical gravity currents at C = 0.2 and Re= 4000.

(Winters et al. 1995; Birman, Martin & Meiburg 2005; Dai 2015; Dai & Huang 2016),
the time derivative of the potential energy in the system is

dEp

dt
=
∫
V
ρu3 dV, Ep(t)=

∫
V
ρx3 dV. (3.6a,b)

The first term on the right-hand side of (3.4) represents the dissipation rate and we
use Ed to denote the time integral of dissipation rate, i.e.

Ed(t)=
∫ t

0
ε(τ ) dτ , ε = 2

Re

∫
V

sijsij dV. (3.7a,b)

In other words, equation (3.4) is essentially a statement of conservation of energy,
i.e. that Ek + Ep + Ed is a constant in the adjustment processes of rotating cylindrical
gravity currents.

Since the energy budgets for rotating cylindrical gravity currents are qualitatively
similar for all ratios of Coriolis to inertia forces considered in this study, here we
focus on the case of rotating cylindrical gravity currents at C = 0.2 and Re = 4000
and other cases are not discussed here in detail for brevity. Figure 14 shows the time
histories of the normalized potential energy, kinetic energy, kinetic energy associated
with heavy fluid and dissipation rate during the propagation of rotating cylindrical
gravity currents at C = 0.2 and Re = 4000. The energy budgets are normalized with
the initial potential energy in the system and the superscript n denotes normalized
contributions. The overall energy in the simulations is observed to be conserved to
a high degree of accuracy. The maximum error in the overall energy is within 5 %
and can be attributed mainly to the fact that the effects of diffusion in the density
field on the potential energy are neglected. As the heavy fluid initially collapses
radially outward, the kinetic energy increases at the expense of decreasing potential
energy. As the outer rim of the spreading heavy fluid breaks away from the body of
the current, at t ≈ 6.44 or Ωt/2π ≈ 0.21, the dissipation rate reaches its maximum
value. As the detached outer rim of heavy fluid approaches a maximum radius of
propagation, the potential energy in the rotating system reaches a local minimum,
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at t ≈ 9.42 or Ωt/2π ≈ 0.30 and a new pulse of heavy fluid begins to form near
the centre of rotation at r ≈ 1.5, cf. figures 8 and 9 at t = 9.42. The new pulse
of heavy fluid initially moves radially outward over the contracting body of the
current and the potential energy in the system increases at the expense of decreasing
kinetic energy until a local maximum of potential energy is reached, at t ≈ 16.34
or Ωt/2π ≈ 0.52, approximately when the kinetic energy reaches a local minimum
value. The radius of the advancing front and the leading edge of subsequent pulses,
while the potential energy in the system is increasing, is highlighted with closed
symbols in figure 10. It is worth noting that, the contraction–relaxation motion may
be initiated after the attainment of a maximum radius of propagation for C = 0.1, 0.2,
while the contraction–relaxation motion may also be initiated before the attainment
of a maximum radius of propagation for C = 0.3. During the latter part of the new
pulse propagation, the heavy fluid accumulated in the new pulse relaxes and the
kinetic energy in the system increases at the expense of decreasing potential energy
until a local minimum of potential energy is reached, at t ≈ 24.82 or Ωt/2π≈ 0.79,
approximately when the kinetic energy reaches a local maximum value and another
new pulse of heavy fluid takes form.

For the rotating cylindrical gravity currents, due to the Coriolis effects, the potential
energy in the system does not decrease monotonically but shows a cyclic pattern
of rise and fall consistent with the contraction–relaxation process of the heavy fluid.
Based on the simulation results, it is observed that during the contraction–relaxation
motion of the heavy fluid, the normalized potential energy oscillates in the range of
0.14.En

p .0.15 for C=0.1, 0.21.En
p .0.24 for C=0.2 and 0.29.En

p .0.33 for C=
0.3 for the rotating cylindrical gravity currents at Re= 4000 considered in this study.
The fraction of initial potential energy, that is retained in the rotating system after the
heavy fluid is released, increases as the ratio of Coriolis to inertia forces increases. It
should be noted that, although the kinetic energy shows local maximum and minimum
values as does the potential energy, the sum of kinetic energy and potential energy, i.e.
Ek + Ep, is decreasing over time due to the dissipation. While the potential energy in
the system oscillates in a fixed range, it is mainly the kinetic energy that is consumed
by the dissipation, as shown by the decreasing kinetic energy in figure 14. As also
confirmed by laboratory experiments, these new pulses are generated repeatedly in the
rotating cylindrical gravity currents and the above transformation between potential
energy and kinetic energy, where the kinetic energy in the system is decreasing due
to the dissipation, is likewise repeated as the contraction–relaxation process continues.

3.4. Lobes and clefts and flow structures
The lobe-and-cleft structure is a ubiquitous, three-dimensional feature at the front
of gravity currents at sufficiently high Reynolds numbers. The three-dimensional
lobe-and-cleft structure of the advancing front can be seen in figures 2 and 6 for the
cylindrical gravity currents in non-rotating and rotating systems. To date, it is known
that the lobe-and-cleft structure originates in the unstable stratification of a thin layer
of light ambient fluid overrun by the leading edge of gravity currents (Simpson 1972;
Härtel, Carlsson & Thunblom 2000a). The leading edge of the cylindrical gravity
currents in non-rotating (C = 0) and rotating (C = 0.1) systems, identified by the
contour of ρ = 0.01 close to the bottom boundary, is plotted at consecutive times on
the (x1, x2) plane in figure 15. The composite picture provides a clear view of the
formation of lobes and clefts and captures the splitting and merging of existing lobes
and clefts. The major feature of the rotating cylindrical gravity currents, as clearly
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FIGURE 15. Composite picture on the (x1, x2) plane of the leading edge of the
non-rotating and rotating cylindrical gravity currents over time. The non-rotating case
(C= 0) is shown in panel (a) and the rotating case (C= 0.1) is shown in panel (b). Front
location is visualized by contours of ρ = 0.01 close to the bottom at x3 = 0.012. Time
separation between consecutive contours is chosen at 1t= 0.495. For illustrative purposes,
the last outer contour in panel (a) is chosen at t=20.79 and the last outer contour in panel
(b) is chosen at t = 18.74. The Reynolds number in the simulations of the non-rotating
and rotating cylindrical gravity currents is chosen at Re= 4000.
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FIGURE 16. The wavelength of the lobes for Re= 4000 plotted against the inverse of the
ratio of Coriolis to inertia forces. Note that the deformation radius, R̃d, is related to the
ratio of Coriolis to inertia forces via R̃d = R̃0/(2C).

observed again in figure 15, is the attainment of a maximum radius of propagation.
Furthermore, due to the retrograde azimuthal motion of the heavy fluid, relative to the
rotating system, the clefts leave a footprint which goes in the clockwise direction on
the (x1, x2) plane. It is also observed in figure 15 that merger between existing lobes
occurs as the maximum radius of propagation is approached. Laboratory experiments
by Stegner et al. (2004) show that the final wavelength of the lobes that occurs just
before the contraction stage depends on the deformation radius, R̃d = R̃0/(2C). From
our three-dimensional high-resolution simulations, it is also confirmed that the final
wavelength of the lobes for Re= 4000 is proportional to the deformation radius, R̃d,
or equivalently, inversely proportional to the ratio of Coriolis to inertia forces, C, as
shown in figure 16.

With the help of three-dimensional high-resolution simulations, the flow field in
the lobe-and-cleft structure can be visualized. For non-rotating cylindrical gravity
currents, it has been observed by Cantero et al. (2007a) that there exist horizontal
flow directed from the centre of each lobe into the two neighbouring clefts, vertically
upward flow at the clefts and vertically downward flow at the lobes, as confirmed
here in figure 17(a) for the non-rotating cylindrical gravity current at Re= 4000 and
at t= 7.07. For rotating cylindrical gravity currents, the horizontal flow in a lobe near
the bed, due to the retrograde azimuthal motion of the heavy fluid, is skewed toward
the downwind direction, as shown in figure 17(b) for the rotating cylindrical gravity
currents at C = 0.1 and Re= 4000 and also at t = 7.07. For each cleft in a rotating
cylindrical gravity current, there exist vertically upward flow on one side of the cleft
and vertically downward flow on the other side of the cleft.

Quantitative information on the number of lobes at selected time instances is
presented in table 1. The counting of the number of lobes in rotating cylindrical
gravity currents requires a careful interpretation, especially at the incipient stage
of merger and splitting of the lobes and clefts due to the complex nature of the
structure. For non-rotating cylindrical gravity currents, it was reported previously
by Cantero et al. (2007a) that the number of lobes is maintained over time as the
non-rotating cylindrical gravity currents propagate radially outward. For rotating

at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/jfm.2016.598
Downloaded from http:/www.cambridge.org/core. National Taiwan University Library, on 01 Oct 2016 at 07:54:05, subject to the Cambridge Core terms of use, available

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/jfm.2016.598
http:/www.cambridge.org/core


94 A. Dai and C.-S. Wu

Re= 4000 Re= 8000
Ωt
2π

C = 0.1 C = 0.2 C = 0.3 C = 0.2

R N90 R N90 R N90 R N90

0.059 2.42 16.50+1.50
−1.50 — — — — — —

0.068 2.62 17.25+0.75
−1.25 — — — — 1.86 23.25+1.75

−1.25

0.077 2.83 17.75+0.25
−0.75 — — — — 1.96 24.50+0.50

−0.50

0.086 3.03 18.25+0.75
−0.25 — — — — 2.06 23.75+1.25

−1.75

0.097 3.24 17.75+0.25
−0.75 — — — — 2.19 22.50+0.50

−0.50

0.113 3.47 17.25+0.75
−1.25 2.26 15.75+0.25

−0.75 — — 2.38 21.75+1.25
−1.75

0.122 3.63 17.25+0.75
−1.25 2.38 16.25+0.75

−1.25 — — 2.46 20.25+0.75
−0.25

0.140 3.87 16.50+0.50
−0.50 2.58 16.75+1.25

−0.75 — — 2.65 18.50+2.50
−1.50

0.149 3.97 15.75+1.25
−0.75 2.65 16.50+1.50

−1.50 — — 2.73 18.25+1.25
−1.75

0.158 4.10 14.25+0.75
−1.25 2.75 15.75+1.25

−0.75 — — 2.85 17.75+1.25
−0.75

0.169 4.24 14.00+0.00
−0.00 2.85 15.25+0.75

−0.25 2.24 14.00+0.00
−0.00 2.95 16.00+1.00

−1.00

0.182 4.37 13.25+0.75
−1.25 2.97 14.50+0.50

−0.50 2.32 14.25+0.75
−0.25 3.07 14.25+0.75

−1.25

0.203 4.55 12.00+0.00
−0.00 3.14 13.75+0.25

−0.75 2.47 15.00+1.00
−1.00 3.23 13.00+1.00

−1.00

0.230 — — 3.32 13.00+1.00
−1.00 2.63 13.75+0.25

−0.75 3.44 12.50+0.50
−0.50

0.243 — — 3.41 13.00+0.00
−0.00 2.70 13.00+0.00

−0.00 3.53 12.25+0.75
−0.25

0.257 — — 3.48 12.25+0.75
−0.25 2.76 12.50+0.50

−0.50 3.61 11.50+0.50
−0.50

0.270 — — 3.54 11.00+1.00
−1.00 2.81 11.25+0.75

−1.25 3.69 11.00+1.00
−1.00

0.284 — — — — 2.85 10.00+1.00
−1.00 — —

0.297 — — — — 2.90 9.00+0.00
−0.00 — —

0.311 — — — — 2.93 8.25+0.75
−1.25 — —

TABLE 1. Quantitative information on the lobe-and-cleft structure. Time is expressed in
terms of the fraction of one revolution that the system has rotated through, i.e. Ωt/2π. R
is the mean radius of the advancing front and N90 is the mean number of lobes within
a 90◦ sector, which is averaged over four quadrants of the computational domain. The
error estimates are to add and subtract the maximum and minimum values and are not
the root-mean-square estimates.

cylindrical gravity currents, table 1 shows that, for the rotating cylindrical gravity
currents at C= 0.1, 0.2, 0.3 and Re= 4000, 8000 considered in this study, the number
of lobes is maintained only for a limited period of time before merger between
existing lobes occurs when a maximum radius of propagation is approached.

To better visualize the three-dimensional structure of the rotating cylindrical gravity
currents, figure 18 shows the swirling strength for the rotating cylindrical gravity
current at C = 0.2 and Re = 4000. For illustrative purposes, time instances are
chosen at t = 3.14, 6.44, 9.42, which correspond to Ωt/2π ≈ 0.10, 0.20, 0.30,
respectively. The swirling strength, λci, is the absolute value of the imaginary part
of the complex eigenvalues of the velocity gradient tensor and is suitable to pick
out regions of intense vorticity (Chakraborty, Balachandar & Adrian 2005). It is
clear from figure 18 that the Kelvin–Helmholtz vortices maintain nearly perfect
axisymmetry prior to Ωt/2π ≈ 0.10. As the maximum radius of propagation is
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FIGURE 17. Near-bed flow at the advancing front of the cylindrical gravity currents at
C = 0 and Re= 4000, shown in panel (a), and at C = 0.1 and Re= 4000, shown in panel
(b). The advancing front, represented by the thick solid line, is visualized by the density
contour of ρ= 0.015 close to the bottom at x3= 0.012. The vector field shows the velocity
on the (x1, x2) plane at x3 = 0.012. The thin solid (dashed) lines represent the positive
(negative) vertical velocity on the (x1, x2) plane at x3 = 0.012.

approached, three-dimensionality of the flow quickly develops. Furthermore, there
exist quasi-streamwise vortices winding around the Kelvin–Helmholtz vortices and
leading to break up process of the vortex structures, as shown in figure 18 at t= 6.44
or Ωt/2π ≈ 0.20. Such quasi-streamwise vortices do not have counterparts in the
non-rotating cylindrical gravity currents.

3.5. Influence of the Reynolds number
The propagation of the rotating cylindrical gravity currents can be expected to vary
with the Reynolds number, due to the changing balance between the inertial and
viscous forces. Here we examine how the above picture of the rotating cylindrical
gravity currents depends on the Reynolds number. To do this, we restrict our attention
to the rotating cylindrical gravity currents with the ratio of Coriolis to inertia forces
maintained at C = 0.2 and the Reynolds number varied at five different values of 500,
1000, 2000, 4000 and 8000.

For the lowest two Reynolds numbers of 500 and 1000 considered in this study, the
rotating cylindrical gravity current propagates radially outward in a way consistent
with the other higher Reynolds numbers of 2000, 4000 and 8000. However, the
number of vortices forming due to the roll up of the interface appears to increase
with increasing Reynolds number. During the initial one-tenth of a revolution of
the system, except that no Kelvin–Helmholtz vortex develops at Re = 500, there
are two, three, four and five Kelvin–Helmholtz vortices forming at the interface
between the heavy and light fluids for Re= 1000, 2000, 4000 and 8000, respectively.
Furthermore, at Re = 500, 1000, the rotating cylindrical gravity currents remain
perfectly axisymmetric throughout the simulation and the outer rim of spreading
heavy fluid does not break away from the body of the current while at the other
higher Reynolds numbers three-dimensionality of the flow quickly develops after the
initial one-tenth of a revolution of the system.
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(a)

(b)

(c)

FIGURE 18. Volumetric rendering of λci for the rotating cylindrical gravity current at
C = 0.2 and Re = 4000. For illustrative purposes, time instances are chosen at t = 3.14,
6.44, 9.42 (a–c), which correspond to Ωt/2π ≈ 0.10, 0.20, 0.30, respectively. Spacing
between consecutive grid lines in the horizontal directions, i.e. x1 and x2, is chosen at
one dimensionless unit.

The number of lobes, as listed in table 1, is found to increase with increasing
Reynolds number for rotating cylindrical gravity currents at C = 0.2 and Re = 4000,
8000. The maximum radius of propagation, Rmax, for the C = 0.2 case, as shown
in figure 19, increases with increasing Reynolds number and the time required to
reach the maximum radius of propagation, Tmax, increases from ΩTmax/2π≈ 0.341 at
Re= 500 to ΩTmax/2π≈ 0.378 at Re= 8000. Our results indicate that the influence of
the Reynolds number diminishes as Re increases, which is consistent with previously
published reports, e.g. Birman et al. (2005) and Dai (2015), that the influence of the
Reynolds number is weak for Re & 4000.
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FIGURE 19. Maximum radius of propagation, Rmax, against the Reynolds number, Re, for
the rotating cylindrical gravity currents at C = 0.2.

4. Conclusions

Cylindrical gravity currents, produced by a full-depth lock release, in a rotating
system are investigated by means of three-dimensional high-resolution simulations of
the incompressible variable-density Navier–Stokes equations with the Coriolis term
and using the Boussinesq approximation for a small density difference. Here the depth
of the fluid is chosen the same as the radius of the cylindrical lock and the ambient
fluid is non-stratified. Our attention is focused on the situation when the Coriolis to
inertia ratio C is not large, namely 0.1 6 C 6 0.3, and the non-rotating case, namely
C = 0, is also briefly considered.

Previously, based on laboratory experiments and axisymmetric Navier–Stokes
equations, it was reported that during an initial period of about one-tenth of a
revolution of the system, the Coriolis effects are not significant and both the rotating
and non-rotating cylindrical gravity currents propagate radially outward consistently.
In this study, we confirmed this observation using three-dimensional high-resolution
Navier–Stokes simulations and revealed that both non-rotating and rotating cylindrical
gravity currents exhibit nearly perfect axisymmetry in flow patterns during the
initial one-tenth of a revolution of the system and the Kelvin–Helmholtz vortices
do not undergo bending and tilting processes at this stage of flow. After the initial
one-tenth of a revolution of the system, three-dimensionality of the flow develops and
the rotating cylindrical gravity currents are only ‘statistically’ axisymmetric in that
variations in the azimuthal direction are observed.

After the initial one-tenth of a revolution and in less than half of a revolution of the
system, the outer rim of the spreading heavy fluid breaks away from the body of the
current and the dissipation rate in the system reaches its maximum value during the
entire adjustment process. The detached outer rim of heavy fluid continues to move
radially outward, until a maximum radius of propagation is reached. The contraction–
relaxation motion is a complex rearrangement process of the spreading heavy fluid. As
the body of the current contracts inward toward the centre of rotation, a new pulse of
heavy fluid, which takes form near the centre of rotation over the inward contracting
heavy fluid, begins to move radially outward.
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As the new pulse initially moves radially outward over contracting heavy fluid, the
potential energy in the system increases at the expense of decreasing kinetic energy
until a local maximum of potential energy is reached, approximately when the kinetic
energy in the system reaches a local minimum value. During the latter part of the
new pulse propagation, the heavy fluid accumulated in the new pulse relaxes and the
kinetic energy in the system increases at the expense of decreasing potential energy
until a local minimum of potential energy is reached, approximately when the kinetic
energy in the system reaches a local maximum value and another new pulse of heavy
fluid takes form. It should be noted that, although energy is transformed between
potential energy and kinetic energy in the contraction–relaxation motion, it is mainly
the kinetic energy that is consumed by the dissipation and the potential energy in the
system oscillates in a fixed range. Depending on the ratio of Coriolis to inertia forces,
the contraction–relaxation motion may be initiated after or before the attainment of a
maximum radius of propagation. The new pulse of heavy fluid does not break away
from the body of the current, which occurs only once before the initial advancing
front approaches the maximum radius of propagation.

Regarding the lobes and clefts, it is known that the number of lobes is maintained
over time as the non-rotating cylindrical gravity currents at sufficiently high Reynolds
numbers propagate radially outward. In this study, we show that, for rotating
cylindrical gravity currents at sufficiently high Reynolds numbers, the number of lobes
is maintained only for a limited period of time before merger between existing lobes
occurs when a maximum radius of propagation is approached. In the lobe-and-cleft
structure of non-rotating cylindrical gravity currents at sufficiently high Reynolds
numbers, there exist horizontal flow near the bed directed from the centre of a lobe
into its two neighbouring clefts, vertically upward flow at the clefts and vertically
downward flow at the lobes. For rotating cylindrical gravity currents at sufficiently
high Reynolds numbers, the lobe-and-cleft structure still exists but the flow in the
lobe-and-cleft structure is skewed toward the downwind direction due to the retrograde
azimuthal motion relative to the rotating system.

The three-dimensional high-resolution simulations presented in this study comple-
ment the existing shallow-water formulation (please see, for example, Ungarish
1993, 2009) in that many important features and insights for rotating cylindrical
gravity currents are accurately predicted and revealed with good physical assumptions
and simple mathematical models. With the use of three-dimensional high-resolution
Navier–Stokes simulations, we are now also in a better position to validate the
applicability of the full axisymmetry assumption previously adopted in the numerical
simulations, as an example, by Hallworth et al. (2001). From our investigation, it
becomes clearer that perfect axisymmetry is a valid assumption for the rotating
cylindrical gravity currents only when the Reynolds number is sufficiently low, e.g.
Re = 1000, or only for the initial one-tenth of a revolution of the system when the
Reynolds number is larger, e.g. Re = 4000 and 8000. In the latter case of rotating
cylindrical gravity currents at larger Reynolds numbers, three-dimensionality of the
flow quickly develops after the initial one-tenth of a revolution. Afterwards, the
outer rim of spreading heavy fluid breaks away from the body of the current and a
complex contraction–relaxation motion begins. As reported by Hallworth et al. (2001)
in their figure 15, simulations for the rotating cylindrical gravity currents based
on the full axisymmetry assumption show good agreement with the experiments
only before the attainment of a maximum radius of propagation but, after the
attainment of a maximum radius of propagation, both the radius of propagation and
the pulse period are in less good agreement with the experiments. Our investigation
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confirms the validity of the axisymmetry assumption during the initial one-tenth of
a revolution of the system and further demonstrates that, for accurate modelling of
rotating cylindrical gravity currents, three-dimensional simulations without the full
axisymmetry assumption are necessary when the maximum radius of propagation is
approached and when the rotating cylindrical gravity currents experience a complex
contraction–relaxation motion. Future extensions of the present study may include
the partial-depth release cylindrical gravity currents, other lock aspect ratios, a higher
ratio of Coriolis to inertia forces and non-Boussinesq cases (Ungarish 2010). In
these topics the development of the shallow-water models is more advanced and
the high-resolution simulations of the type reported here are necessary for potential
corroboration and progress.
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