
Construction of Nested Orthogonal Arrays

1 Introduction

In many engineering and scientific disciplines, it could be costly, time-consuming or even infeasible

to investigate a complex physical process by conventional experimental approaches. As computing

power has increased, deterministic computer models have already become prevalent surrogates for

efficiently studying these sophisticated real-world systems. In practice, Gaussian random function

models are used to build surrogate models by interpolating all the observed responses, and system

outputs over the entire input domain can then be readily emulated. This enables an investigator to

systematically explore the relationship between the input and output variables of a complex system.

For an excellent introduction to the methodology of designing, modeling and analyzing computer

experiments, the reader is referred to Santner et al. (2003) and Fang et al. (2006). Typically, design

and analysis strategies are all developed for computer simulations with a single level of accuracy.

In practice, however, a large-scale computer code might require several hours or even a few days to

return a single response. To build surrogate models under limited computation resources, complex

computer codes are frequently implemented with two levels of accuracy, such that the high-accuracy

simulations are more accurate but computationally expensive, and the low-accuracy simulations are

less accurate but inexpensive in computation. The input-output relationships can then be explored

through a surrogate model built by adequately integrating the system responses derived from both

high- and low-accuracy simulations.

To efficiently execute deterministic computer codes with various levels of accuracy, an innovative

planning scheme is therefore required and has received much attention in the past few years. To the

best of my knowledge, Qian et al. (2009b) first proposed a new class of nested space-filling designs

called the nested orthogonal array-based Latin hypercube designs, abbreviated as NOA-based LHDs

hereinafter, for planning multi-fidelity computer simulations. For a given nested orthogonal array,

a NOA-based LHD can be readily derived through the construction method developed by Tang

(1993) with the modified labeling scheme introduced by Qian et al. (2009b). When a nested space-

filling design is carried out, the differences between the system outputs with various fidelity levels

can be observed. The responses obtained from the high-accuracy simulations can then be utilized

to calibrate the surrogate model built by the low-accuracy simulations, such that the emulator of

system response can achieve satisfactory prediction accuracy. For different construction methods of

nested orthogonal arrays, the reader is referred to Qian et al. (2009a), Qian et al. (2009b), Dey

(2010), Sun et al. (2013), and Sun et al. (2014), among others. Under the constraints of limited

computation resources, a series of candidate designs with run-size flexibility is usually preferred by a
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practitioner. However, none of the aforementioned studies offers a flexible choice in run-size. In this

article, a new class of nested orthogonal arrays called the nested orthogonal arrays of parallel-flats

type is therefore introduced for addressing this practical issue. A noteworthy feature of the proposed

designs is their run-size flexibility. For a given number of input variables of interest, the proposed

methods can generate an extensive collection of candidate designs with different run-sizes. This

allows a researcher to choose a planning scheme for a series of two-fidelity computer simulations

subject to a constraint on run-size.

2 Notation and Definitions

Firstly, some notation, definitions and terms to be used throughout this article are introduced in

this section.

2.1 Galois Field Projections

Let p be a prime, then the set of residues {0, 1, . . . , p−1}modulo p comprises a Galois field denoted by

GF (p) under the addition and multiplication modulo p. Furthermore, let f(x) = aux
u + au−1x

u−1 +

· · · + a1x + a0 be an irreducible polynomial of degree u, where ai ∈ GF (p) for all i; and au = 1.

Under the addition and multiplication of polynomial modulo f(x), the set of all polynomials of

degrees less than u comprises a Galois field denoted by GF (pu). Throughout, let s1 = pu1 and

s2 = pu2 be two distinct powers of the same prime p, where the integers u1 > u2 ≥ 1. Let F1

denote the GF (s1) with irreducible polynomial f1(x), and F2 denote the GF (s2) with irreducible

polynomial f2(x). Accordingly, a Galois field projection introduced by Bose and Bush (1952), which

associates an element on F1 with another element on F2, is presented as follows. For any q(x) =

au1−1x
u1−1 + · · ·+ au2−1x

u2−1 + · · ·+ a1x+ a0 ∈ F1, the projection φ [q(x)] is defined as

φ [q(x)] = au2−1x
u2−1 + · · ·+ a1x+ a0.

Clearly, the projection φ eliminates all the terms of degree u2 and higher, such that the output is

an element of F2. There are some other projections defined on Galois fields which play a prominent

role in the construction of nested orthogonal arrays. For further discussions regarding different

projections on Galois fields and their applications, the reader can consult Qian et al. (2009a) and

Sun et al. (2014). Below, two examples are given to illustrate the Galois field projections used in

this article.

Example 1. Let p = 2, u1 = 2 and u2 = 1, then s1 = 4 and s2 = 2. Accordingly, F1 = {0, 1, x, x+1}
is a GF (4) with irreducible polynomial x2 + x + 1, and F2 = {0, 1} is a GF (2) with irreducible

polynomial x + 1. For associating the elements on these two Galois fields, the projection φ [q(x)] is

defined as follows:

φ[q(x)] =

{
0 if q(x) = 0 or x.

1 if q(x) = 1 or x+ 1.

Clearly, φ [q(x)] associates an element on GF (4) with an alternative one on GF (2). �
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Example 2. Let p = 2, u1 = 3 and u2 = 1, then s1 = 8 and s2 = 2. It is straightforward to

know that F1 = {0, 1, x, x+ 1, x2, x2 + 1, x2 + x, x2 + x+ 1} is a GF (8) with irreducible polynomial

x3 +x+ 1, and F2 = {0, 1} is a GF (2) with irreducible polynomial x+ 1. The Galois field projection

φ [q(x)] is then defined as follows:

φ[q(x)] =

{
0 if q(x) = 0 or x or x2 or x2 + x.

1 if q(x) = 1 or x+ 1 or x2 + 1 or x2 + x+ 1.

Obviously, φ [q(x)] maps a polynomial on GF (8) to another one on GF (2). �

2.2 Parallel-Flats Designs and Orthogonal Arrays

For a prime p and a positive integer u, let GF (s) denote the Galois field of order s, where s = pu,

the uth power of the prime p. Furthermore, let Ti be an sn−k × n matrix, whose rows represent the

sn−k solutions t of linear equations At = ci over GF (s) for i = 1, . . . , f . Specifically, A is a k × n
matrix of rank k, and ci is a k× 1 vector. Typically, Ti is called a single-flat design. By juxtaposing

f single-flat designs T1, . . . ,Tf , an N ×n matrix L can be obtained easily, where N = f ×sn−k. The

matrix L is commonly called a parallel-flats design determined by the matrix pair (A,C), where

C = [c1, . . . , cf ], a k × f matrix. Clearly, parallel-flats designs can be constructed by collecting

all the solutions of linear equations determined by the matrix pair (A,C) over Galois fields. The

construction of parallel-flats designs dates back to the pioneering work of Connor and Young (1959)

and later studied by several researchers, including Addelman (1961) and John (1962), among others.

For an overview of the general theory of parallel-flats designs, the reader is referred to Cheng (2014).

An N × n matrix L with entries from a set of s distinct elements is said to be an s-symbol

orthogonal array of strength t denoted by OA(N, n, s, t), if all possible combinations of the s elements

occur equally often as rows in any N × t submatrix of L. As an immensely important tool for

planning multifactorial experiments, orthogonal arrays have been successfully employed in industrial

process improvements, quality control, biopharmaceutical studies, clinical trails, and many other

scientific disciplines. For a comprehensive introduction to the theory, construction and applications

of orthogonal arrays, the reader can consult Hedayat et al. (1999) and Wu and Hamada (2009).

Under the framework of parallel-flats designs, Srivastava and Throop (1990) proposed the sufficient

and necessary condition for characterizing the required matrix pair (A,C), such that the resulting

L is an orthogonal array. Orthogonal arrays derived through this construction method are usually

called the orthogonal arrays of parallel-flats type. This special class of orthogonal arrays is commonly

used for tackling real-world problems, primarily due to its simple construction and run-size flexibility.

Let U = (uij) and V = (vkl) be r1×c1 and r2×c2 matrices with entries fromGF (s). Subsequently,

two operations for U and V are introduced for constructing the proposed designs. The first operation

U ⊕ V is defined by

U ⊕ V =


u11 ∗ V u12 ∗ V · · · u1c1 ∗ V
u21 ∗ V u22 ∗ V · · · u2c1 ∗ V

...
...

. . .
...

ur11 ∗ V ur12 ∗ V · · · ur1c1 ∗ V

 ,
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where ∗ stands for the addition on GF (s); and uij ∗ V denotes a matrix obtained by adding uij

to all the elements of V , that is, uij ∗ V = (uij ∗ vkl). Clearly, the resulting matrix of U ⊕ V is

an (r1r2) × (c1c2) matrix. Similarly, the second operation U ⊗ V can be defined by replacing the

addition with multiplication on GF (s). Alternatively, let G be the additive group associated with the

Galois field GF (s). An r× c matrix D with entries from G is called a difference matrix of s symbols,

if every element of G appears equally often in the vector difference between any two columns of D.

The concept of difference matrices was originally introduced by Bose and Bush (1952), and it was

then widely utilized in the construction of orthogonal arrays. The reader is referred to Hedayat et al.

(1999) for an excellent reference for difference matrices. Based on the construction method proposed

by Bose and Bush (1952), if D is an r× c difference matrix of s symbols and L is an OA(N, n, s, 2),

then the following array

L⊕D

is an OA(Nr, nc, s, 2). This provides a simple but powerful method for generating large orthogonal

arrays through existing small ones, and a similar idea is adopted by the construction methods

presented in the subsequent sections.

3 Design Construction

Suppose that the projection φ is used in the level-collapsing scheme for L, and the resulting matrix

is denoted by φ(L). Firstly, the formal definition of a nested orthogonal array is explicitly given

below.

Definition 1. The triplet (L1,L2, φ) constitutes a nested orthogonal array of strength t denoted by

NOA((N1, N2), n, (s1, s2), t) where L2 is a submatrix of L1 if and only if (a) the N1 × n matrix L1

is an OA(N1, n, s1, t); and (b) the N2 × n matrix φ(L2) is an OA(N2, n, s2, t).

For planning a series of computer simulations with two levels of accuracy, candidate designs with

a flexible choice in run-size is usually preferred by a practitioner. For a given number of input

variables n, some construction methods are introduced for generating nested orthogonal arrays with

various run-sizes.

3.1 An Algorithm

Let A1 be an s1 × (s1 + 1) matrix given by

A1 =
[
F1 Is1

]
. (1)

When A1 is given as (1), parallel-flats designs with flexible run-sizes can be constructed easily,

because of the fact that a single-flat design determined by this A1 has the smallest run-size s1.

When the A1 in (1) is chosen, a nested orthogonal array can be generated by searching an s1 × f
matrix C1, such that the conditions described in Corollary 1 are fulfilled. Before presenting the

proposed algorithm, an interesting fact, which plays a prominent role in the computer search, is first

introduced.
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Lemma 1. For a given A1 as (1), the matrix pair (A1,C1) satisfies the condition (a) of Corollary

1 with t ≥ 2 only if each row of C1 is uniform on GF (s1).

For generating a nested orthogonal array, according to Lemma 1, when A1 is given as (1), the rows

of a candidate C1 should be requested to consist of the s1 elements of GF (s1) equally often. This

fact not only decreases the number of candidates, but also significantly decreases the computational

cost in searching the required C1. Let R be the candidate set consisting of all uniform 1×f vector on

GF (s1). Note that the number of flats f here should be equal to a multiple of s1, that is, f = g× s1,
where g is a positive integer, due to the requirement of uniformity for all vectors in R. For generating

the proposed designs, an algorithm is then devised below.

Step 0: Generate the candidate set R.

Step 1: When g is odd, choose s1 distinct row vectors r1, r2, . . . , rs1 from R, and a candidate

C1 is constructed by

C1 =


r1

r2
...

rs1

 .
On the other hand, when g is even, choose z distinct row vectors r1, r2, . . . , rz from R, and a

candidate C1 is constructed by

C1 =


1s2 ⊗ r1

1s2 ⊗ r2
...

1s2 ⊗ rz

 ,
where z = s1/s2 = pu1−u2 , the ratio between s1 and s2.

Step 2: Verify whether the matrix pairs (A1,C1) and (A2,C2) satisfy the conditions described

in Corollary 1, where A1 is given as (1); A2 = φ(A1); and C2 = φ(C1). If so, terminate the

procedure. Otherwise, return to Step 1 for generating an alternative candidate C1.

When implementing the proposed algorithm, the run-sizes of obtained designs for the two layers

are separately equal to N1 = f×s1 = g×p2u1 and N2 = f×s2 = g×pu1+u2 . This reveals an interesting

fact that the run-size for each layer is not necessarily equal to a power of prime, but a multiple of

prime power. On the other hand, different collections of candidate C1 matrices are considered

in Step 1. This setup is naively determined by my limited experience in searching the required

designs. Typically, the computational cost and searching time can be reduced significantly, if different

collections of candidate C1 matrices are chosen for an odd g and an even g, respectively. However,

there is currently no theoretical support for this setup. Fortunately, it performs quite well within

the range of design parameters explored in the present study. In practice, the proposed algorithm is

computationally infeasible for searching designs with large parameters, and some analytical methods

are therefore developed for addressing this issue in the next section.
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3.2 Construction Through Existing NOAs

Suppose that the triplet (L10,L20, φ) constitutes a NOA((f1, f2), s1, (s1, s2), 2), it could be obtained

by implementing the proposed algorithm or other approaches in the literatures. Through an existing

nested orthogonal array, an alternative one can be readily constructed as follows.

Method 1. Let A1 be an (s1s2)× (s1s2 + 1) matrix, and C1 be an (s1s2)× f1 matrix, where

A1 =
[

1s2 ⊗ F1 Is1s2

]
; and C1 = LT

10 ⊗ 1s2 . (2)

Alternatively, let A2 be an (s1s2)× (s1s2 + 1) matrix, and C2 be an (s1s2)× f2 matrix, where

A2 = φ(A1); and C2 = φ(LT
20)⊗ 1s2 . (3)

By collecting all the solutions of linear equations determined by (A1,C1) and (A2,C2) separately

given as (2) and (3) over Galois fields, a new nested orthogonal array can be obtained immediately.

When an s1-symbol orthogonal array of strength two L is available, as mentioned earlier, then

L ⊕D and φ(L) ⊕ φ(D) are s1- and s2-symbol orthogonal arrays of strength two, where D and

φ(D) denote the s1× s1 difference matrices of s1 and s2 symbols, respectively. In the same spirit as

Method 1, another construction method can then be devised as follows.

Method 2. Let A1 be an (s21s2)× (s21s2 + 1) matrix, and C1 be an (s21s2)× (f1s1) matrix, where

A1 =
[

1s1s2 ⊗ F1 Is21s2

]
; and C1 = LT

10 ⊕DT ⊗ 1s2 . (4)

In addition, let A2 be an (s21s2)× (s21s2 + 1) matrix, and C2 be an (s21s2)× (f2s1) matrix, where

A2 = φ(A1); and C2 = φ(LT
20)⊕ φ(D)T ⊗ 1s2 . (5)

By solving the linear systems determined by (A1,C1) and (A2,C2) separately given as (4) and (5)

over Galois fields, another nested orthogonal array can be readily obtained. The design parameters

of nested orthogonal arrays obtained by Methods 1 and 2 are summarized as follows.

Theorem 1. (a) The triplet (L1,L2, φ) comprises a NOA((f1s1, f2s2), s1s2 + 1, (s1, s2), 2), if L1 is

determined by (A1,C1) exhibited in (2), and φ(L2) is determined by (A2,C2) exhibited in (3). (b)

The triplet (L1,L2, φ) constitutes a NOA((f1s
2
1, f2s1s2), s

2
1s2 + 1, (s1, s2), 2), if L1 is determined by

(A1,C1) exhibited in (4), and φ(L2) is determined by (A2,C2) exhibited in (5).

Because of the fact that the C1 and C2 matrices used in Methods 1 and 2 are constructed through

an existing orthogonal array, the resulting vT
1 C1 and vT

2 C2 are found to be uniform on Galois fields

for those wt(vT
1 A1) ≤ 2 and wt(vT

2 A2) ≤ 2, respectively. By the conditions described in Corollary 1,

these matrix pairs can be employed for generating nested orthogonal arrays. The following examples

are given for illustrating the applications of Methods 1 and 2.

Example 3. Suppose that the input-output relationship between the system output and nine input

variables is of interest, and a NOA((64, 16), 9, (4, 2), 2) is required for planning a series of computer

6



simulations with two levels of accuracy. Let A1 be an 8 × 9 matrix, and C1 be an 8 × 16 matrix,

separately given by

A1 =
[

12 ⊗ F1 I8

]
and C1 = LT

10 ⊗ 12,

where F1 represents the vector consisting of the four elements of GF (4) in lexicographic order; and

L10 denotes the projection onto the first four columns of L1 presented in (??). On the other hand,

let A2 be an 8× 9 matrix, and C2 be an 8× 8 matrix, separately given by

A2 = φ(A1) =
[

14 ⊗ F2 I8

]
and C2 = φ(LT

20)⊗ 12,

where F2 stands for the vector consisting of the two elements of GF (2) in lexicographic order;

and φ(L20) represents the projection onto the first four columns of φ(L2) presented in (??). The

matrix pairs (A1,C1) and (A2,C2) satisfy the statement (a) of Theorem 1, the corresponding triplet

(L1,L2, φ) constitutes a NOA((64, 16), 9, (4, 2), 2). �

Suppose that the matrix pairs (A10,C10) and (A20,C20) together with the Galois field projection

φ determine a NOA((f0s
n0−k0
1 , f0s

n0−k0
2 ), n0, (s1, s2), 2), where A10 is a k0×n0 matrix; C10 is a k0×f0

matrix; A20 = φ(A10); and C20 = φ(C10). Based on these elements, another nested orthogonal array

can be derived through the following method.

Method 3. Let A1 be a (k0s1)× (n0s1) matrix, and C1 be a (k0s1)× (f0s1) matrix, where

A1 = A10 ⊕DT ; and C1 = C10 ⊕DT . (6)

Alternatively, let A2 be a (k0s1)× (n0s1) matrix, and C2 be a (k0s1)× (f0s1) matrix, where

A2 = φ(A1) = A20 ⊕ φ(D)T ; and C2 = φ(C1) = C20 ⊕ φ(D)T . (7)

By collecting all the solutions of linear equations determined by (A1,C1) and (A2,C2) separately

given as (6) and (7) over Galois fields, a new nested orthogonal array can be immediately derived,

and its parameters are summarized as follows.

Theorem 2. The triplet (L1,L2, φ) comprises aNOA((f0s
(n0−k0)s1+1
1 , f0s1s

(n0−k0)s1
2 ), n0s1, (s1, s2), 2),

if L1 is determined by (A1,C1) exhibited in (6), and φ(L2) is determined by (A2,C2) exhibited in

(7).

Obviously, Method 3 tends to generate designs with large run-sizes. The row ranks of A1 in (6)

and A2 in (7) are both equal to k0s1, leading to that the run-sizes of single-flat designs are separately

equal to s
(n0−k0)s1
1 and s

(n0−k0)s1
2 for the two layers.

3.3 Design Catalogue

For a given number of input variables n, computational and analytical methods are combined for

constructing the proposed designs. Firstly, the proposed algorithm is used to generate designs with

small to moderate run-sizes for n = 5 and (s1, s2) = (4, 2). By implementing the proposed algorithm,
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a computer search is carried out for seeking designs with f = 4, 8, 12, 16, 20, 24 and 28, respectively.

The obtained designs are named as Series 0, which not only serve as stepping stones for planning

computer simulations, but also offer some templates for generating designs with large parameters.

For a given design from Series 0, let L10 and φ(L20) be the projections onto the first four columns of

the two layers, respectively. Using Method 1 with L10 and φ(L20), a new series of nested orthogonal

arrays is constructed through (2) and (3) for n = 9, and named as Series 1. Similarly, using Method

2 with L10 and φ(L20), an alternative collection of designs called Series 2 can be derived through (4)

and (5) for n = 33.

On the other hand, let (A10,C10) be the matrix pair for determining a design from Series 0, 1

or 2. Using Method 3, three different collections of nested orthogonal arrays, which are separately

named as Series 3, 4 and 5, can be generated through (6) and (7) for n = 20, 36 and 132, respectively.

All the obtained designs are collected in the online supplementary materials available on the author’s

personal website (http://www.shinfu.idv.tw), and the design parameters are summarized in Table 1.

Note that the supplementary materials include several lists of nested orthogonal arrays in terms of

(A1,C1) and (A2,C2). In particular, the designs of Series 0 are also available in terms of (L1,L2).

Table 1: Parameters of designs in the catalogue

Series n (N1, N2)

0 5 (16, 8), (32, 16), (48, 24), (64, 32), (80, 40),
(96, 48), (112, 56)

1 9 (64, 16), (128, 32), (192, 48), (256, 64), (320, 80),
(384, 96), (448, 112)

2 33 (256, 64), (512, 128), (768, 192), (1024, 256), (1280, 320),
(1536, 384), (1792, 448)

3 20 (4096, 256), (8192, 512), (12288, 768), (16384, 1024), (20480, 1280)
(24576, 1536), (28672, 1792)

4 36 (16384, 1024), (32768, 2048), (49152, 3072), (65536, 4096), (81920, 5120)
(98304, 6144), (114688, 7168)

5 132 (65536, 4096), (131072, 8192), (196608, 12288), (262144, 16384), (327680, 20480)
(393216, 24576), (458752, 28672)
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