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Abstract

In the present study, a new lattice thermal conductivity model for a thin-film semiconductor is proposed. This model is considered,
compared to the existing models, to be more mathematically consistent in the sense that the heat flow is contributed solely by the low-
dimensional phonons, and the spatial confinement effects not only on the phonon group and phase velocities but also on the Debye tem-
perature are taken into consideration. To count the boundary scattering effect, an analytical or empirical boundary scattering rate is
suggested and added to the total scattering rate via the Mattiessen’s rule. It is found this newly proposed model predicts as well as
the existing models and reasonably well with the experimental data.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The thermoelectric coolers have recently received a lot
of attention because they have many advantages over the
conventional compressors. These advantages include
miniaturization, low noise, high reliability, no use of the
refrigerants, and so on [1,2]. However, their practical appli-
cations are still limited because of the associated poor cool-
ing efficiency, low cooling ability, and high cooling
temperature. The performance of a thermoelectric cooler
is mainly dominated by the material figure-of-merit
ZT = S2rT/(kl + ke), where S is the Seebeck coefficient, r
is the electrical conductivity, kl is the lattice thermal con-
ductivity, ke is the electronic thermal conductivity, and T
is the absolute temperature [3]. Materials with high electri-
cal conductivity (low Joule’s heat generation rate) and low
thermal conductivity (low Fourier’s heat conduction rate)
are therefore preferred. However, for the commonly known
materials, those having high electric conductivities also
have high thermal conductivities. Conventional thermo-

electric materials thus have a ZT value only about one at
room temperature [4].

Recently, a large enhancement of the ZT values has
been reported experimentally as well as theoretically [5–9]
by adopting semiconductor quantum wells, quantum wires
and superlattices. It is found the lattice thermal conductiv-
ity kl of these low-dimensional semiconductors is terribly
small compared to their bulk structures due to the spatial
confinement effect. The spatial confinement effect changes
the energy bands (formation of minibands in superlattices),
modifies the phonon dispersion relation, and increases the
phonon-boundary (or interface) scattering [8,9]. Lots of
studies have therefore been performed on an investigation
of the phonon behavior in the semiconductor under the size
effects.

In the literatures, most lattice thermal conductivity
models are constructed based on the phonon Boltzmann
transport equation (PBTE) under the relaxation-time
approximation. According to the classification made by
Zou and Balandin [10], these models can be distinguished
into three types. The first one solves the PBTE as if there
were no boundaries but takes into account the modifica-
tions of the phonon dispersion relation by the spatial
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confinement effect and adds a boundary scattering rate
(1/sB) to the total scattering rate through the Mattiessen’s
rule. Balandin and Wang [11] so computed the lateral
lattice thermal conductivity of a quantum well with free-
surface boundaries. They found the changes of the phonon
dispersion relation and of the group velocity lead to a sig-
nificant increase of the scattering strength, including the
Umklapp-process scattering (U), the mass-difference scat-
tering (M), and the boundary scattering (B). The lattice
thermal conductivity is consequently reduced by more than
one order in magnitude. Moreover, a weak dependence of
the lattice thermal conductivity on the temperature is
found, which agrees with the experimental observation
[12]. Khitun et al. [13] presented a similar analysis on free-
and clamped-surface quantum wires. They found that the
reduction of the lattice thermal conductivity associated
with a quantum wire is even much more than that associ-
ated with a quantum well.

The thermal conductivity models of the second type
look for an exact solution of the PBTE with partially dif-
fuse boundaries. Such a phonon distribution results in a
modified formula for the lattice thermal conductivity.
These models however adopt the bulk dispersion relation.
Accepting these ideas, Walkauskas et al. [14] also discov-
ered the reduction of the lattice thermal conductivity of
GaAs quantum wells and wires. The third approach for
the lattice thermal conductivity is proposed by Zou and
Balandin [10] and is a combination of the former two
approaches. That is, both the modified phonon dispersion
relation and the modified lattice thermal conductivity for-
mula are taken into consideration. Nonetheless, the bound-
ary scattering effect was carelessly doubly counted in their
work, once in solving the non-equilibrium phonon distribu-
tion and the other in adding a boundary scattering rate to
the total scattering rate via the Mattiessen’s rule.

Although the lattice thermal conductivity models men-
tioned above agree more or less with the experimental mea-
surements, there exist some inconsistent assumptions in
these models. The major one involves the use of a popula-
tion-weighted average phonon dispersion relation. It is
known, under the spatial confinement effect, there are dis-
crete and infinitely many modes (frequencies) of phonons
for a given low-dimensional wave number [15]. An imaged
energy level system is usually assumed among modes hav-
ing a same frequency, and based on it the equilibrium pho-
non populations are calculated. An average group velocity
over these modes weighted by their phonon populations is
thus obtained [10,11,13]. When computing the heat flow
rate, this average phonon dispersion relation is further-
more assumed to be three-dimensionally isotropic. The
irrationality obviously exists in the imaged energy level sys-
tem (phonons have a same frequency but different popula-
tions), in changing the low-dimensional wave numbers into
three-dimensional ones, and in turning anisotropy to iso-
tropy. Other minor inconsistent assumptions made in the
existing lattice thermal conductivity models still include a
constant (average) phonon group velocity, a same Debye

temperature for bulk and low-dimensional materials, and
so on.

These major and minor irrational simplifications inspire
the motivation of the present study, to develop a new lat-
tice thermal conductivity model which is mathematically
consistent as much as possible. A model that counts
directly the contributions of each branch of phonon modes
and insists on the low-dimensional wave numbers will be
targeted. The boundary scattering will be viewed as a
microscopic phenomenon and modeled through a charac-
teristic relaxation time. The rest of this paper is organized
as follows. In Section 2, we present the proposed lattice
thermal conductivity model for semiconductor thin film,
including an analytical formula for evaluating the bound-
ary scattering rate. A silicon thin film is employed for
illustration. Comparison with existing models and with
the experimental measurements is given in Section 3. So
are the discussions. The conclusions are given at last in
Section 4.

2. Mathematical model

In the following subsections, we describe one by one the
mathematical models for the phonon dispersion relations,
the Debye temperatures, the non-equilibrium phonon dis-
tribution, the heat flux, and the scattering rates.

2.1. Phonon dispersion relations

Due to the low group velocity of the optic phonons, the
thermal conductivities of semiconductor materials are
mainly contributed by the acoustic phonons [6,16]. We
consider the acoustic modes in an isotropic continuum
material. The lattice displacement, ui, is governed by the
elasticity equation, [15]

o2ui

ot2
¼ v2

tr2ui þ ðv2
l � v2

t Þ
o2uj

oxioxj
ð1Þ

For bulk materials, Eq. (1) is solved with a use of the three-
dimensional Fourier transform. The allowed vibration
eigenmodes (polarizations) and the corresponding eigen-
values (frequencies) are analyzed then. The dispersion rela-
tion describing the relation between the three-dimensional
wave vector ð~qÞ and the frequency x is desired. The disper-
sion relations of three polarizations for bulk materials are
found to be: x = vlq for one longitudinal wave and
x = vtq for two transverse waves, where q is the three-
dimensional wave number ðq2 ¼ q2

x þ q2
y þ q2

z Þ. The longitu-
dinal and transverse group velocities (dx/dq) of bulk
materials are thus constant (vl and vt) and as same as the
phase velocities (x/q) [17]. On the other hand, if a free-
standing thin-film semiconductor is considered, a plane
Fourier transform is employed instead and the free-stress
boundary conditions are applied in the thickness direction.
Three different types of the confined phonon polarizations
have also been found [15]: the shear waves, the dilatational
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waves, and the flexural waves, which are characterized by
their distinctive symmetries. The dispersion relations of
shear waves are given by

x2
n ¼ v2

t ðq2
z;n þ q2Þ ð2Þ

where qz,n = np/a (n integer) is the quantized wave vector in
z (thickness)-direction, a is the film thickness, and q is now
the plane wave number ðq2 ¼ q2

x þ q2
yÞ. Several modes of

the shear wave are shown in Fig. 1 for illustration. As
seen, the first mode (n = 1) has a group velocity equal to
vt but higher modes have much smaller group velocities
at low dimensionless wave numbers (qa).

As far as the dilatational and flexural waves are consid-
ered, the dispersion relations are

x2 ¼ v2
l ðq2

l þ q2Þ ¼ v2
t ðq2

t þ q2Þ ð3Þ

where ql and qt are determined by

tanðqta=2Þ
tanðqla=2Þ ¼ �

4q2qlqt

ðq2 � q2
t Þ

2
ð4Þ

for the dilatational waves, and by

tanðqla=2Þ
tanðqta=2Þ ¼ �

4q2qlqt

ðq2 � q2
t Þ

2
ð5Þ

for the flexural waves [15]. It is known that either Eq. (4) or
Eq. (5) has discrete and infinitely many solutions for a gi-
ven wave number q as shown in Fig. 2. As seen, all modes
have group velocities negligible at small wave numbers,
close to the bulk longitudinal one at intermediate wave
numbers, and transiting to the bulk transverse one at very
large wave numbers, except the first mode which displays
only the latter two.

In order to handle the discrete and infinitely many
modes of phonons, a population-weighted average group
velocity [11] or an algebraic averaged one [18] has been
proposed. The average dispersion relation is then used as
if it were a three-dimensionally isotropic one (q is automat-
ically changed to be the three-dimensional wave number),
when the heat flow rate is evaluated. Figs. 1 and 2 however

show that all modes of three polarizations have group
velocities convergent to the bulk transverse velocity at very
large qa. In other words, all three polarizations converge to
the bulk transverse polarization as a ?1. The bulk ther-
mal conductivity cannot be recovered therefore. In this
study, we thus give up the averaging method but count
directly the contributions of all phonon modes of all polar-
izations. Most of all, we insist that the wave number q must
remain two-dimensional consistently.

2.2. Debye temperature

In the previous investigations, a same Debye tempera-
ture is usually employed for both bulk and low-dimen-
sional materials. Nonetheless, the Debye temperature
may also be changed by the spatial confinement effect.
According to the Debye model [19–21], the maximum wave
number qmax associated with phonons in the isotropic crys-
tal of a diamond structure such as silicon can be calculated
as follows

4p
3

q3
max ¼ 4

ð2pÞ3

a3
0

ð6Þ

where a0 is the lattice constant. Taking this maximum wave
number and using the dispersion relations determined by
Eqs. (2)–(5), one can find the cut-off frequency xD(qmax)
and thus determine the Debye temperature hD = �hxD/
kBT for phonons of each mode of each polarization.

2.3. Non-equilibrium phonon distribution

We adopt as usual the steady relaxation-time-approxi-
mated phonon Boltzmann equation [16,20] as follows

~v � r~nþ ~n
s
¼~v � rn0 ð7Þ

where n ¼ n0 � ~n is the phonon distribution function, ~v is
the phonon group velocity, 1/s is the total scattering rate,
and n0 is the equilibrium phonon distribution at the local
temperature T, namely the Bose–Einstein distribution [21],

Fig. 1. The phonon modes of the shear waves in the silicon thin film. The
transverse polarization of the bulk dispersion relations coincides with the
lowest phonon mode.

Fig. 2. The phonon modes of the dilatational waves in the silicon thin
film. The dash line is the longitudinal polarization of the bulk dispersion
relations.
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n0 ¼
1

expð�hx=kBT Þ � 1
ð8Þ

with �h and kB being the Planck constant and the Boltz-
mann constant respectively.

Now suppose that the temperature gradients exist in the
x-direction and that the temperature gradients are so small
that variations of local equilibrium distribution n0 in space
are negligible. The solution ~n of Eq. (7), the non-equilib-
rium part of the phonon distribution, is then easily found
to be

~n ¼ vxs
oT
ox

on0

oT
ð9Þ

for bulk materials, where vx is the x-component of the
group velocity. It is actually also true for the free-standing
thin-film semiconductor because only in-plane (low-dimen-
sional) waves are concerned herein. Strictly speaking, pho-
nons of a quantized mode can be no longer viewed as
approaching the nanostructure surface but phonons of a
superposition of modes can. The boundary scattering effect
will be handled through a use of the boundary scattering
rate. In solving the phonon non-equilibrium distribution
and later evaluating the total heat flow rate, the wave vec-
tor remains two-dimensional as it should be.

2.4. Heat flux

The energy carried by phonons of frequency x and of a
population n is n�hx. We thus propose to compute the heat
flux JQ in the x-direction as

J Q ¼ �
1

ð2pÞ2
1

a

X
s

X
n

Z
~n�hxvx d~q ð10Þ

where the summation n is done over the infinitely many
phonon modes and over all three polarizations (s); contri-
butions from phonons of all possible wave vectors are inte-
grated as well [20,21]. Noticing only the non-equilibrium
part ð~nÞ of the phonon population makes a non-zero net
contribution to the heat flux, by substituting Eq. (9) into
Eq. (10) and adopting the Fourier conduction law

J Q ¼ �kl

oT
ox

ð11Þ

we obtain the lattice thermal conductivity (kl) of thin film
as follows

kl ¼
1

ð2pÞ2
1

a

X
s

X
n

Z
sv2

xð�hxÞ � on0

oT
d~q ð12Þ

with vx = vcosh and d~q ¼ qdqdh, Eq. (12) can be rewritten
as

kl ¼
1

4pa
k3

BT 2

�h2

X
s

X
n

Z hD=T

x0

sv
x3ex

ðex � 1Þ2
� q
x

dx ð13Þ

where x = �hx/kBT and the integration limits (x0 and hD/T)
are the minimum and maximum dimensionless frequencies
of each curve in Figs. 1 and 2 for 0 6 q 6 qmax. They are

different for different phonon modes therefore. In all the
calculations below, the integration is performed nonethe-
less over the wave number instead, because it is easier
and because some phonon modes do not have a unique
inverse dispersion relation q(x).

It is worth mentioning that in the previous models
[10,13], the thermal conductivity of low-dimensional mate-
rials is often written as kl � Dk, where Dk arises from the
collisions between phonons and the boundaries. In deriving
the phonon dispersion relation of a free-standing thin film,
only waves traveling in the plane are allowed however. It
seems then no phonons can collide with the boundaries.
This is not true because the associated amplitudes of these
in-plane waves are strongly affected by the boundaries. To
model this effect, we explain the plane-traveling waves as a
lumped result. The boundary scattering instead is viewed as
a microscopic phenomenon and may be modeled through a
use of a characteristic relaxation time (sB) as introduced in
the following subsection.

2.5. Relaxation time

In the present study, we reconsider the four scattering
mechanisms that were investigated by Zou and Balandin
[10]. They are the Umklapp scattering (1/sU), the mass-
difference scattering (1/sM), the phonon–electron scattering
(1/sPh–e), and the boundary scattering (1/sB). For a detailed
description of the former three, the readers are referred to
the work of Zou and Balandin [10]. In the followings, we
introduce the boundary scattering rate (1/sB) employed in
the present study.

We first recall that when the phonon group velocities are
considered to be three-dimensional, phonons collide with
boundaries. The resulting lattice thermal conductivity
becomes kl � Dk [14,19], where

kl ¼
1

6p2

k4
BT 3

�h3

X
s

Z hD=T

0

sv � x4ex

ðex � 1Þ2
� q2

x2
dx ð14Þ

and

Dk ¼ a
16p2

k4
BT 3

�h3

X
s

Z hD=T

0

HðgÞ
g2

x4ex

ðex � 1Þ2
� q2

x2
dx ð15Þ

The function H(g) is given by

HðgÞ � ð1� pÞ � ð1� pÞ2
X1
i¼1

pi�1DðigÞ ð16Þ

with

DðgÞ � 1� 5g
3
� g2

6
þ g3

6

� �
e�g þ 2g2 1� g2

12

� �
�
Z 1

g

e�x

x
dx

ð17Þ

and

g ¼ a
‘
¼ a

sv
ð18Þ
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The symbol p represents the interfacial roughness and is de-
fined as the fraction of phonons that are specularly re-
flected at the boundary. Special carefulness is required in
evaluating the scattering rate 1/s however. Because the
boundary scattering effect has been counted through Dk,
the scattering rate 1/s should include only the other three.
That is

1

s
¼ 1

sU

þ 1

sM

þ 1

sPh–e

ð19Þ

We now attempt to derive a relaxation time to model the
boundary scattering effect. We first write the lattice thermal
conductivity of a thin-film semiconductor in a form like
that suitable for bulk materials, i.e.

kfilm ¼
1

6p2

k4
BT 3

�h3

X
s

Z hD=T

0

s0v � x4ex

ðex � 1Þ2
� q2

x2
dx ð20Þ

Comparing Eq. (20) with Eqs. (14) and (15), we find

s0 ¼ s 1� 3

8

HðgÞ
g

� �
ð21Þ

According to the Mattiessen’s rule, we may define

1

sB

¼ 1

s0
� 1

s
ð22Þ

It is easy to check that 1/sB = 0 when p = 1 and 1/sB / v/a
when p = 0. In Fig. 3, we show the ratio of the so-obtained
boundary scattering rate to the sum of the other three,
namely s�1

B =s�1, when p = 0. An important property asso-
ciated with this boundary scattering rate is it has a non-
zero value only if some other scattering mechanisms exist.
Shown in Fig. 4 are the proposed boundary scattering rates
for several lowest phonon modes of the dilatational polar-
ization in a silicon thin film of thickness 20 nm.

Compared to the commonly used empirical boundary
scattering rate

1

sB

¼ v
a
ð1� pÞ ð23Þ

as shown in Fig. 5, the newly proposed rate is less than half
of the empirical one. Moreover, the newly proposed
boundary scattering rates of all modes are small at small
frequencies because 1/s is small there. The empirical one
of the first mode however is the largest among all.

In remark, we attempt to compute the lattice thermal
conductivity of a free-standing silicon thin film in the pres-
ent study by Eq. (13) (with s replaced by s0), the dispersion
relations Eqs. (2)–(5), the maximum wave number Eq. (6),
and the relaxation time evaluated by Eqs. (19) and (21).

3. Results and discussion

The lattice thermal conductivity of a silicon thin film is
investigated herein for illustration. The mass density q of
silicon is 2.33 kg/m3. The bulk longitudinal and transverse
velocities are vl = 8470 m/s and vt = 5340 m/s respectively.
All other values of material properties and model parame-
ters are extracted directly from the work of Zou and Balan-
din [10]. With a lattice constant of 5.43 Å, the maximum
wave number of silicon is found to be about 11.4 nm�1,

Fig. 3. The ratio of the boundary scattering rate to the sum of the others
against the dimensionless film thickness when p = 0.

Fig. 4. The proposed boundary scattering rates of the four lowest phonon
modes of the dilatational wave in the silicon thin film of thickness 20 nm
against the non-dimensional phonon energy (p = 0).

Fig. 5. The empirical boundary scattering rates of the four lowest phonon
modes of the dilatational wave in the silicon thin film of thickness 20 nm
against the non-dimensional phonon energy (p = 0).
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according to Eq. (6). The Debye temperatures in Eq. (13)
are then determined by using this maximum wave number
and the dispersion curves in Figs. 1 and 2. They are there-
fore different from mode to mode and from polarization to
polarization.

In Figs. 6 and 7, we show the contribution to the lattice
thermal conductivity from each phonon mode of the dila-
tational and shear waves. The temperature is 300 K and
the boundary is purely diffuse (p = 0). Several interesting
phenomena are observed. First, the most contribution
among modes of the dilatational wave comes from the sec-
ond mode instead of the first one. Although the first mode
has larger group velocity (dx/dq) and smaller phase veloc-
ity (x/q), its Debye temperature is smaller. Secondly, there
are some intermediate modes of the dilatational wave
which contributions to the lattice thermal conductivity
are approximately equal and non-negligible. These modes
are those that possess a subrange of wave numbers having
group velocity close to vl and below the maximum wave
number. For even higher modes, their contributions are
less and decrease rapidly with increasing n. Unlike the dila-
tational wave, the contribution curves of the shear wave in
Fig. 7 decrease smoothly and rapidly with increasing n.

Finally, from both figures, one notices that the number
of phonon modes required for a converged total lattice
thermal conductivity increases with increasing film thick-
ness. This is because when the film is thicker (qmaxa larger),
there are more and more modes possessing the subrange of
wave numbers having group velocity close to vl. When the
film is very thick, tremendously many modes must be
required and a bulk thermal conductivity value should be
obtained. In the following calculations, we count the con-
tributions of all modes up to the one that contributes less
than 0.1%, that is

kn

Xn

i¼1

ki

,
< 0:1% ð24Þ

The number of modes used against the film thickness is
shown in Fig. 8. Basically, several hundreds of modes are
required for a thin film of thickness from a few tens to a
few hundreds of nanometers.

In Fig. 9 we show the computed lattice thermal conduc-
tivity of the thin film against the temperature. The film

Fig. 6. Contributions to the lattice thermal conductivity from the phonon
modes of the dilatational waves in the silicon thin film of thickness 20 nm
at T = 300 K (p = 0).

Fig. 7. Contributions to the lattice thermal conductivity from the phonon
modes of the shear waves in the silicon thin film of thickness 20 nm at
T = 300 K (p = 0).

Fig. 8. The number of phonon modes required for a convergence of the
lattice thermal conductivity against the film thickness; solid line: dilata-
tional waves; dot line: shear waves.

Fig. 9. The lattice thermal conductivity of the silicon thin film of thickness
20 nm against the temperature (p = 0). The solid and the dash-doted
curves are predicted by using the analytical and the empirical boundary
scattering rates respectively; the dash curve is predicted by the A1 model.
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thickness is 20 nm and the boundary is purely diffuse
(p = 0). It is seen scattering due to the Umklapp processes,
the mass-difference, and the phonon–electron interactions
causes only a little reduction of the lattice thermal conduc-
tivity. A huge reduction is observed however when the
boundary scattering is included. And it is found also the
lattice thermal conductivity depends weakly on tempera-
ture, agreeing with the experimental measurements [12].
Also shown in Fig. 9 is the prediction based on the so-
called A1 model proposed by Zou and Balandin [10], in
which a population-averaged phonon dispersion relation
of the dilatation wave is employed for all polarizations,
the lattice thermal conductivity formula Eq. (14) with s
being replaced by s0 is adopted, the empirical boundary
scattering rate Eq. (23) is taken, and finally the bulk Debye
temperature 625 K is used. The lattice thermal conductivity
predicted by the present model is close to but larger than
that predicted by the A1 model, even in use of the empirical
boundary scattering rate. It is mainly because the Debye
temperatures employed in the present model are higher.
Although the prediction by the A1 model is closer to the
experimental measurement [23] (22 W/m K at 300 K), an
extrapolation of the measurements by Ju and Goodson
[22] nonetheless suggests a value of 46 W/m K. Anywise,
the newly proposed model is considered to be more math-
ematically consistent.

Shown in Fig. 10 is the lattice thermal conductivity of
the silicon thin film against the interfacial roughness,
namely the specular fraction p. The lattice thermal conduc-
tivity decreases with increasing roughness (decreasing p) as
expected. Interestingly, the A1 model predicts a same lat-
tice thermal conductivity as the present model does when
p = 0. The value however is still less than the bulk counter-
part because of the employed confined dispersion relations.
At last, we calculate the lattice thermal conductivity
against the film thickness and compare it with the experi-
mental measurements [22,23] in Fig. 11. A good agreement,
except the film of thickness 20 nm, is observed, although

the specular fraction p works as a free parameter and can
be adjusted to fit the measurements. The disagreement
between the predicted (from the present model) and mea-
sured thermal conductivities of a silicon thin film of
thickness 20 nm may not be real, because the variance asso-
ciated with the measurement of Liu and Asheghi [23] is as
high as ±20 W/m K. As mentioned above, an extra-
polation of the measurements by Ju and Goodson [22]
nonetheless suggests a value of 46 W/m K, slightly larger
than the predicted value by the present model with an ana-
lytical boundary scattering rate. Agreement regardless of
the film thickness is thus obtained.

Finally, it must be mentioned when the film thickness
is small relative to the phonon wave length, the wave prop-
erties of phonons must be taken into account for an accu-
rate evaluation of the thermal conductivity [24]. The
dominant phonon wavelength at 300 K is about 10 nm
[23], smaller than the thickness of the silicon films under
investigation.

4. Conclusion

In the present study, a lattice thermal conductivity
model for a thin-film semiconductor is developed in the
way that the integration appearing in the lattice thermal
conductivity formula is done over the low-dimensional
wave numbers and all possible spatial confinement effects
are counted. Instead of using a population-weighted dis-
persion relation like previous models, the maximum wave
number is first determined by the material lattice constant,
and contributions to the thermal conductivity from pho-
nons having wave numbers less than this maximum wave
number, of different modes and of different polarizations,
are calculated individually and added together. Finally,
to count the boundary scattering effect, an analytical or
empirical boundary scattering rate is suggested and added
to the total scattering rate via the Mattiessen’s rule.

Fig. 10. The lattice thermal conductivity of the silicon thin film of
thickness 20 nm against the fraction of boundary specular reflection at
T = 300 K. The solid and the dash-dotted curves are predicted by using
the analytical and the empirical boundary scattering rates respectively; the
dash curve is predicted by the A1 model.

Fig. 11. A comparison of the computed lattice thermal conductivity of the
silicon thin film at T = 300 K with the experimental measurements by Ju
and Goodson [22] (M) and Liu and Asheghi [23] (}). The solid and the
dash-dotted curves are predicted by using the analytical and the empirical
boundary scattering rates respectively; the dash curve is predicted by the
A1 model.
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Silicon thin film is investigated for example. The calcu-
lations show that a few hundreds of modes for each polar-
ization are required in evaluating the lattice thermal
conductivity of a thin film of thickness 10–200 nm. Partic-
ularly when the confined polarizations are concerned,
many modes possess phonons moving at group velocities
close to the bulk longitudinal velocity and making non-
negligible contributions to the thermal conductivity. The
thicker the film, the more these modes are there. With
many enough modes counted, this newly proposed model
predicts as well as previous models do and reasonably well
with the experimental data. Emphasized nonetheless is its
consistency in handling all the spatial confinement effects.
The model can be easily applied to other semiconductor
thin films as long as fundamental material properties are
available, such as the bulk longitudinal and transverse
velocities as well as the lattice constant, and all the associ-
ated scattering rates are properly estimated. The latter is a
complicated and difficult task and beyond the scope of the
present study.
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