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Abstract

We propose to apply the open-source software development model to the domain of
hardware/software codesign. Specifically, we propose to build around the GNU/Linux
operating system a POSIX-thread compatible multi-threaded programming model for the
reconfigurable CPU/FPGA hybrid platform. Under this programming model, hardware
and software computation tasks will be able to communicate efficiently while executing
in parallel. Also, the computations carried out by software and hardware are treated in a
homogeneous way and thus interchangeable.

Our target application domain is information security. Specifically, we will imple-
ment two applications to demonstrate the effectiveness of this new framework. The first
one is the acceleration of packet classification in wire-speed firewall. The second one is
the implementation of a family of emergent multivariate public-key cryptosystems, called
the Tame Transformation Signature (TTS). We hope the synergy between the two cho-
sen applications and the proposed programming model will bring fruitful results to both
hardware/software codesign and information security communities.

1 Background Information and Project Goals

1.1 Hardware/Software Codesign and Reconfigurable Computing
Hardware/software codesign has emerged as a mainstream design paradigm since it was first
conceived over a decade ago [1, 2, 3]. With the wide spread of microprocessor-based designs,
people have come to realize the benefits of incorporating general-purpose microprocessors in
digital circuit designs. For one, this tends to notably reduce circuit design complexity by mov-
ing some of the logic to software running on microprocessors. Another benefit is the ability
to take advantage of a wide selection of commercial, off-the-shelf (COTS) microprocessor
designs, some of which have evolved for a long period of time and hence have been highly
optimized for a variety of common computational tasks. As a result, these COTS components
often enjoy a significantly lower cost-performance ratio due to economy of scale [4]. With the
emergence of complex and high-performance field-programmable gate array (FPGA) devices,
this eventually leads to the proliferation of reconfigurable computers [5].
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In order to fully realize the potential of the new hardware/software codesign paradigm,
software will need to be treated as a first-class component in the design activities [2]. How-
ever, after more than a decade of research and practice, this is hardly the case. The emphasis
is still largely on hardware, despite the pressing and urgent demand for more mature software
development tools and better programming models from the participating developers and en-
gineers of these design activities. This is especially true in Taiwan’s circuit design industry,
where the majority of revenue comes from sales of tangible hardware products. As a result,
there is a serious lack of mature programming models and middleware, let alone high-quality
operating systems, in “software” part of the design and development activities of the codesign
paradigm [6, 7].

Lately, academic researchers have looked into this problem. For example, Niehaus et
al. argued that the lack of an integrated view has hindered the developers from fully realizing
the promises brought about by the marriage of CPU and FPGA in reconfigurable comput-
ing [6, 4, 8]. They proposed to use the multi-threaded computation model as the unifying
framework for hardware/software codesign activities and implemented as an extension to a
real-time, embedded Linux kernel. Later on, Vuletić et al. proposed to implement such a
multi-threaded programming model via a virtualization interface at the virtual memory (VM)
layer in the Linux 2.4 kernel [9, 10]. More recently, So, Tkachenko, and Brodersen proposed
to abstract hardware computation tasks as processes on a modified Linux 2.4 kernel to fa-
cilitate close interaction and multi-tasking between hardware and software components in a
hybrid CPU/FPGA system [11, 12]. All these independent efforts are in line with our proposal
and have attained some initial success in the application realms they have chosen. Unfortu-
nately, they did not receive a wide appreciation in the community and did not have enough
impact on the mainstream practice. As it will become clear later on, one of the major goals of
this proposal is to investigate this new multi-threaded programming model proposed by these
prominent researchers in the field. By integrating all these research and development efforts
and applying them to an eminent field of application, we hope that we will be able to promote
the role played by software in the hardware/software codesign community.

1.2 Open-Source Software
To promote the role played by software in the hardware/software codesign paradigm, perhaps
we can borrow a lesson from the open-source software movement. The open-source software
movement has successfully created a community and an ecosystem for all sorts of players to
take part and generate revenues. It also establishes “convergence points” around which stan-
dards are built and efforts are focused. The GNU/Linux operating system is a good example
of such a convergence point. With the success of GNU/Linux, application developers benefit
tremendously from a stable, feature-rich, yet still actively evolving set of application program-
ming interfaces (API). With this set of API, various developers can build their works on top
of others’ and do not need to repeatedly reinvent the wheels. It is also of great merit to have
a central repository in which innovation and recognition can accumulate; such an invaluable
“brand name” would otherwise take an astronomical amount of resources to build. Another
less well-known example is the GNURadio project [13], which has spawned an entire array
of new research and development efforts across academia and industry on software-defined
radio [14]. Yet another famous example from the hardware community is the OpenCores
project [15], from which we have witnessed the power of sharing and how that power can
stimulate rapid growth of interest and activity in a community. As we have noted in the previ-
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ous section, there have been quite some efforts, albeit scattered, in investigating efficient pro-
gramming models that make software a first-class component. We argue that the open-source
way provides a viable answer: by setting up an open-source framework, more developers from
both hardware and software community will be attracted to build their works on top of this
framework, which will in turn ignite more design and refinement activities on searching for
better programming models for hardware/software codesign, completing a positive feedback
cycle.

1.3 Driving Applications in Information Security
We will use two types of applications to drive the design exploration in this project. The first
type is drawn from public-key cryptography. It is well known that many public-key cryp-
tosystems (PKCs) can benefit from special hardware for accelerating the involved algebraic
operations. Here we will look at such an application from a different angle, namely, how the
new programming model can help development in a rapidly growing field where there is great
uncertainty. That is, we would like to implement a family of analogous yet still evolving PKCs
with hardware/software codesign. The algorithmic partitioning and design reuse will play an
important role in this application. The second type of application is from network security.
This has also been a major source of hardware acceleration works due to the demand of high
speed and high throughput in modern networking equipment.

1.3.1 Emergent Public-Key Cryptosystems

Traditionally, public-key cryptography has been an important application realm for hard-
ware/software codesign due to its stringent computational requirements. There have been
quite some efforts in implementing mature or near-mature PKCs [16, 17, 18, 19, 20]. We feel
that it is also important to pay special attention to emergent PKCs, for the experience from
implementing these PKCs can provide insightful feedback on the performance—sometimes
even the security—of these new PKCs to their respective design cryptologists, not to mention
the head-start we would have once they become mainstream standards.

We are especially interested in several families of emergent PKCs, collectively known as
the multivariate PKCs. They are alternatives to traditional PKCs, such as the RSA scheme
and the Elliptic Curve Cryptography (ECC), that are mostly based on large algebraic struc-
tures. The new multivariate PKCs usually execute much faster than traditional PKCs on the
same hardware. More importantly, they represent a future-proof investment against many new
cryptanalysis techniques [21, 22, 23]. We have obtained some initial success along this re-
search direction. We have investigated ways to save die space and energy consumption in
hardware via an ASIC implementation of the Tame Transformation Signature (TTS) scheme
on a TSMC 0.25µm process. The current consumption of TTS is only 21 µA for comput-
ing a signature, using 22,000 gate equivalents and 16,000 100-kHz cycles (160 milliseconds).
Figure 1 shows a block diagram of our ASIC implementation.

Currently, multivariate PKCs have not received enough attention in applications due to
their novelty. As a low-resource alternative and a hedge against the rising quantum com-
puters, prominent cryptologists are calling for more efforts on investigating the security and
applicability of these new multivariate PKCs [21, 22, 23]. However, without a reasonably op-
timized hardware implementation, it is difficult—if possible at all—to assess the effectiveness
of some of the cryptanalysis techniques, e.g., the differential power analysis [24]. Moreover,
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Figure 1: The block diagram of our ASIC implementation of the TTS scheme.

implementing these new multivariate PKCs presents a unique challenge to hardware/software
codesign because of the constant evolution of these systems. A good hardware/software code-
sign model should allow rapid adaption when security patches become available from the
design cryptologists.

1.3.2 Network Security

Another arena where a great amount of hardware/software codesign activities take place is
network security. The base form of the constituting components in network security is the
firewall, a machine that inspects packets and determines what to do with them based on a
set of predefined or dynamically generated rules, preferably at wire speed. Because of the
high throughput requirement put forth by modern network equipment, it has stimulated ample
innovation and development in hardware/software codesign.

We will focus on one of the most important techniques in building a high-speed firewall,
namely, the hardware/software codesign of packet classification for netfilter/iptables in the
Linux kernel. The netfiter/iptables project is a firewalling subsystem in Linux 2.4 and 2.6
kernels. It provides the firewall and many other derivative functionalities, including state-
less and stateful packet filtering, a wide variety of network address translation, and packet
mangling [25].

The major part of netfilter/iptables, the netfilter framework, is a set of hooks inside Linux
kernel’s network protocol stack. It allows kernel modules to register callback functions at
these hooks. These kernel callback functions can in turn perform packet filtering, network
address translation, and other packet mangling on packets that match certain patterns. The
iptables, on the other hand, is a table of rulesets. A rule in a ruleset specifies what action to
take once a packet is matched against a particular pattern. A userland program, iptables(8),
can be used to inspect, create, and modify these rulesets.

The rulesets are organized as tables, and each table contains a number of built-in chains
and may contain user-defined chains. Each chain is a list of rules, with each rule specifying
what to do with a packet that matches the pattern specified in that rule. In its own terminol-
ogy, this is a target, which may be a standard action such as ACCEPT, DROP, QUEUE, or
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Figure 2: The block diagram of the netfilter/iptables architecture.

RETURN, or a jump to a user-defined chain in the same table. For IPv4, there are five hooks
defined in netfilter: PREROUTING, INPUT, FORWARD, POSTROUTING, and OUTPUT.
The traversal of these hooks inside the kernel protocol stack are described in detail in section
3 of the Linux netfilter Hacking HOWTO [26]. Figure 2 depicts the block diagram of the
netfilter architecture.

We have attained some initial success along this direction. In a previous NSC project,
we have built a hardware accelerator for packet classification in netfilter/iptables. We have
successfully offloaded packet classification on a firewall onto an FPGA-based network co-
processor for the host processor in a high-speed networking environment. We have verified
that our network coprocessor can significantly speed up the packet processing in a prototype
firewall system based on the Xilinx Virtex 4 FX FPGA development platform.

1.4 Project Goals
In this project, we aim to promote the role played by software in the hardware/software code-
sign paradigm so that software is indeed treated as a first-class component, and the potential
promised by the paradigm can be fully realized. We hope to achieve this goal via reinforc-
ing the habit of sharing intellectual output to the hardware/software codesign community, and
hopefully we can replicate the success experience of many open-source software projects.

We hope to validate the effectiveness of the multi-threaded programming model proposed
by the prominent researchers in the field mentioned previously. We will demonstrate this
using two applications: packet classification in network security, which demands data high
throughput, as well as several emergent public-key cryptosystems, which demand an expres-
sive and efficient programming model. We hope to demonstrate that the flexibility afforded
by the multi-threaded programming model enables rapid prototyping of the new schemes.

We also hope to help emergent PKCs gain more recognition and attention by providing
high-quality, open-source implementations for performance and security analysis. We hope
the close synergy between the two chosen applications and the programming model under
investigation will bring fruitful results to both sides.

We summarize below the high-level goals of this project.

1. Verify the effectiveness of the multi-threaded programming model as a unifying frame-
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work of hardware/software codesign using applications from information security.

2. Promote the role played by software in hardware/software codesign by reinforcing the
spirit of open-source in the community.

3. Help emergent multivariate PKCs gain momentum through the synergy with open-
source hardware/software codesign.

2 Proposed Approaches
We will first investigate and compare three existing proposals and implementations, labeled
as Method A [6, 4, 8], B [9, 10], and C [11, 12]. We hope that we can reuse these designs as
much as possible in designing and implementing a POSIX-thread compatible multi-threaded
programming model suitable for information security applications. Under this programming
model, the computations carried out by software and hardware are treated in a homogeneous
way and thus interchangeable. That is, computation can be migrated from software to hard-
ware or vice versa in a seamless manner. This will enable system designers to roam freely
across the hardware/software boundary, as well as to explore more efficient different hard-
ware/software algorithmic partitioning strategies, not to mention that the familiar program-
ming model will and attract more developers and enable more rapid development cycles. This
programming model will also enable parallel execution of hardware coprocessors, as well as
close and efficient collaboration between hardware and software components. Figure 3 depicts
the overall system architecture for the proposed framework.

We will use two applications to demonstrate the power of this new framework. The first
one, labeled as Application A, is the acceleration of the netfilter/iptables inside the Linux ker-
nel. We will validate the effectiveness by inspecting the obtained speedup with the framework
and compare it with the result obtained by hand-crafted hardware/software codesign from the
literature. The second application we want to demonstrate, labeled as Application B, is a
hybrid hardware/software implementation of a family of cutting-edge multivariate PKCs, the
TTS schemes [21]. The members in the family share similar traits and thus have similar re-
quirements when it comes to implementation, yet their detailed algorithmic features exhibit a
large degree of variation, which will put forth a harsh test for the flexibility and expressiveness
of the new programming model.

The relationship between the major tasks of this project, as well as the respective investi-
gators in charge, is depicted in Figure 4.

3 Deliverables
We list the major deliverables of this project below. We plan to complete items 1 and 2 before
the end of first year, while deliver items 3 and 4 at the end of second year. Items 3 and 4 will
be delivered on an appropriate FPGA platform, whose architecture is depicted in Figure 5.

1. Specification of a POSIX-thread compatible framework for hardware/software codesign

2. Implementation, testing, and performance evaluation of the proposed framework

3. Hardware-accelerated netfilter/iptables using the proposed framework
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Figure 3: The architecture of the POSIX-thread compatible programming framework.
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Figure 5: The hardware architecture of the demo FPGA platform.

4. Hybrid implementation of the TTS family of PKCs using the proposed framework

We also include a Gantt chart that illustrates the scheduled project progress in Figure 6.
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A The Complete List of POSIX Thread API
1. pthread atfork: Register Fork Handlers

2. pthread atfork np: Register Fork Handlers with Extended Options

3. pthread attr destroy: Destroy Thread Attributes Object

4. pthread attr getdetachstate: Get Thread Attributes Object Detachstate

5. pthread attr getinheritsched: Get Thread Attribute Object Inherit Scheduling Attributes

6. pthread attr getschedparam: Get Thread Attributes Object Scheduling Parameters

7. pthread attr getschedpolicy: Get Scheduling Policy

8. pthread attr getscope: Get Scheduling Scope

9. pthread attr getstackaddr: Get Stack Address

10. pthread attr getstacksize: Get Stack Size

11. pthread attr init: Initialize Thread Attributes Object

12. pthread attr setdetachstate: Set Thread Attributes Object Detachstate

13. pthread attr setinheritsched: Set Thread Attribute Inherit Scheduling Attributes

14. pthread attr setschedparam: Set Thread Attributes Object Scheduling Parameters

15. pthread attr setschedpolicy: Set Scheduling Policy

16. pthread attr setscope: Set Scheduling Scope

17. pthread attr setstackaddr: Set Stack Address

18. pthread attr setstacksize: Set Stack Size

19. pthread cancel: Cancel Thread

20. pthread cleanup peek np: Copy Cleanup Handler from Cancellation Cleanup Stack

21. pthread cleanup pop: Pop Cleanup Handler off of Cancellation Cleanup Stack

22. pthread cleanup push: Push Cleanup Handler onto Cancellation Cleanup Stack

23. pthread clear exit np: Clear Exit Status of Thread

24. pthread cond broadcast: Broadcast Condition to All Waiting Threads

25. pthread cond destroy: Destroy Condition Variable

26. pthread cond init: Initialize Condition Variable

27. pthread cond signal: Signal Condition to One Waiting Thread

28. pthread cond timedwait: Timed Wait for Condition

29. pthread cond wait: Wait for Condition

30. pthread condattr destroy: Destroy Condition Variable Attributes Object

31. pthread condattr init: Initialize Condition Variable Attributes Object
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32. pthread condattr getpshared: Get Process Shared Attribute from Condition Attributes Object

33. pthread condattr setpshared: Set Process Shared Attribute in Condition Attributes Object

34. pthread create: Create Thread

35. pthread delay np: Delay Thread for Requested Interval

36. pthread detach: Detach Thread

37. pthread equal: Compare Two Threads

38. pthread exit: Terminate Calling Thread

39. pthread extendedjoin np: Wait for Thread with Extended Options

40. pthread get expiration np: Get Condition Expiration Time from Relative Time

41. pthread getcancelstate np: Get Cancel State

42. pthread getconcurrency: Get Process Concurrency Level

43. pthread getpthreadoption np: Get Pthread Run-Time Option Data

44. pthread getschedparam: Get Thread Scheduling Parameters

45. pthread getspecific: Get Thread Local Storage Value by Key

46. pthread getthreadid np: Retrieve Unique ID for Calling Thread

47. pthread getunique np: Retrieve Unique ID for Target Thread

48. pthread is initialthread np: Check if Running in the Initial Thread

49. pthread is multithreaded np: Check Current Number of Threads

50. pthread join: Wait for and Detach Thread

51. pthread join np: Wait for Thread to End

52. pthread key create: Create Thread Local Storage Key

53. pthread key delete: Delete Thread Local Storage Key

54. pthread kill: Send Signal to Thread

55. pthread lock global np: Lock Global Mutex

56. pthread mutex destroy: Destroy Mutex

57. pthread mutex getprioceiling: Get Mutex Priority Ceiling

58. pthread mutex init: Initialize Mutex

59. pthread mutex lock: Lock Mutex

60. pthread mutex setprioceiling: Set Mutex Priority Ceiling

61. pthread mutex timedlock np: Lock Mutex with Time-Out

62. pthread mutex trylock: Lock Mutex with No Wait

63. pthread mutex unlock: Unlock Mutex

64. pthread mutexattr destroy: Destroy Mutex Attributes Object

65. pthread mutexattr getkind np: Get Mutex Kind Attribute

66. pthread mutexattr getname np: Get Name from Mutex Attributes Object

67. pthread mutexattr getprioceiling: Get Mutex Priority Ceiling Attribute

68. pthread mutexattr getprotocol: Get Mutex Protocol Attribute

69. pthread mutexattr getpshared: Get Process Shared Attribute from Mutex Attributes Object
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70. pthread mutexattr gettype: Get Mutex Type Attribute

71. pthread mutexattr init: Initialize Mutex Attributes Object

72. pthread mutexattr setkind np: Get Mutex Kind Attribute

73. pthread mutexattr setname np: Set Name in Mutex Attributes Object

74. pthread mutexattr setprioceiling: Set Mutex Priority Ceiling Attribute

75. pthread mutexattr setprotocol: Set Mutex Protocol Attribute

76. pthread mutexattr setpshared: Set Process Shared Attribute in Mutex Attributes Object

77. pthread mutexattr settype: Set Mutex Type Attribute

78. pthread once: Perform One-Time Initialization

79. pthread rwlock destroy: Destroy Read/Write Lock

80. pthread rwlock init: Initialize Read/Write Lock

81. pthread rwlock rdlock: Get Shared Read Lock

82. pthread rwlock timedrdlock np: Get Shared Read Lock with Time-Out

83. pthread rwlock timedwrlock np: Get Exclusive Write Lock with Time-Out

84. pthread rwlock tryrdlock: Get Shared Read Lock with No Wait

85. pthread rwlock trywrlock: Get Exclusive Write Lock with No Wait

86. pthread rwlock unlock: Unlock Exclusive Write or Shared Read Lock

87. pthread rwlock wrlock: Get Exclusive Write Lock

88. pthread rwlockattr destroy: Destroy Read/Write Lock Attribute

89. pthread rwlockattr getpshared: Get Pshared Read/Write Lock Attribute

90. pthread rwlockattr init: Initialize Read/Write Lock Attribute

91. pthread rwlockattr setpshared: Set Pshared Read/Write Lock Attribute

92. pthread self: Get Pthread Handle

93. pthread set mutexattr default np: Set Default Mutex Attributes Object Kind Attribute

94. pthread setcancelstate: Set Cancel State

95. pthread setcanceltype: Set Cancel Type

96. pthread setconcurrency: Set Process Concurrency Level

97. pthread setpthreadoption np: Set Pthread Run-Time Option Data

98. pthread setschedparam: Set Target Thread Scheduling Parameters

99. pthread setspecific: Set Thread Local Storage by Key

100. pthread sigmask: Set or Get Signal Mask

101. pthread signal to cancel np: Convert Signals to Cancel Requests

102. pthread test exit np: Test Thread Exit Status

103. pthread testcancel: Create Cancellation Point

104. pthread trace init np: Initialize or Reinitialize Pthread Tracing

105. PTHREAD TRACE NP: Macro to optionally execute code based on trace level

106. pthread unlock global np: Unlock Global Mutex

107. sched yield: Yield Processor to Another Thread
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