
952 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 8, AUGUST 2008

Energy-Aware Flash Memory Management in Virtual
Memory System

Han-Lin Li, Chia-Lin Yang, Member, IEEE, and Hung-Wei Tseng

Abstract—The traditional virtual memory system is designed
for decades assuming a magnetic disk as the secondary storage.
Recently, flash memory becomes a popular storage alternative
for many portable devices with the continuing improvements on
its capacity, reliability and much lower power consumption than
mechanical hard drives. The characteristics of flash memory are
quite different from a magnetic disk. Therefore, in this paper,
we revisit virtual memory system design considering limitations
imposed by flash memory. In particular, we focus on the energy
efficient aspect since power is the first-order design consider-
ation for embedded systems. Due to the write-once feature of
flash memory, frequent writes incur frequent garbage collection
thereby introducing significant energy overhead. Therefore, in
this paper, we propose three methods to reduce writes to flash
memory. The HotCache scheme adds an SRAM cache to buffer
frequent writes. The subpaging technique partitions a page into
subunits, and only dirty subpages are written to flash memory.
The duplication-aware garbage collection method exploits data
redundancy between the main memory and flash memory to
reduce writes incurred by garbage collection. We also identify one
type of data locality that is inherent in accesses to flash memory
in the virtual memory system, intrapage locality. Intrapage
locality needs to be carefully maintained for data allocation in
flash memory. Destroying intrapage locality causes noticeable
increases in energy consumption. Experimental results show that
the average energy reduction of combined subpaging, HotCache,
and duplication-aware garbage collection techniques is 42.2%.

Index Terms—Embedded systems, energy-efficient, NAND flash
memory, virtual memory.

I. INTRODUCTION

T HE MODERN operation system often adopts the virtual
memory approach to overcome the limitation on physical

memory size and allow the physical memory shared among mul-
tiple tasks as well. The traditional virtual memory system is de-
signed for decades assuming a magnetic disk as the secondary
storage. Recently, flash memory has become a popular storage
alternative for many portable devices with the continuing im-
provements on its capacity, reliability, and much lower power

Manuscript received February 2, 2007; revised May 30, 2007 and July 11,
2007; accepted September 15, 2007. This work was supported in part by the Na-
tional Science Council of Taiwan under Grant NSC 95-2221-E-002-098-MY3,
Grant NSC 96-2752-E-002-008-PAE, and Grant NSC 96-2221-E-002-250- and
in part by the Excellent Research Projects of National Taiwan University under
Project 95R0062-AE00-07. This paper was presented in part at the 2006 Inter-
national Symposium of Low Power and Electronics Design .

H.-L. Li and C.-L. Yang are with the Department of Computer Science and In-
formation Engineering, National Taiwan University, Taipei 106, Taiwan, R.O.C.
(e-mail: yangc@csie.ntu.edu.tw).

H.-W. Tseng is with the Department of Computer Science and Engineering
at University of California at San Diego, La Jolla, CA 92093 USA (e-mail:
h1tseng@cs.ucsd.edu).

Digital Object Identifier 10.1109/TVLSI.2008.2000517

TABLE I
NAND FLASH CHARACTERISTICS

consumption than mechanical hard drives. The characteristics
of flash memory are quite different from a magnetic disk. There-
fore, in this paper, we revisit virtual memory system design con-
sidering limitations imposed by flash memory. In particular, we
focus on the energy efficient aspect since power is the first-order
design consideration for embedded systems.

There are two main types of flash memory. One is NOR flash
memory, and the other is NAND. NAND flash memory is com-
monly used for data storage due to its lower cost and higher
density compared with NOR flash. NAND flash memory is com-
posed of blocks, and each block contains a set of pages. The
typical block and page size are 16 kB and 512 B, respectively.
There are three types of operations in flash memory: read, write
and erase. The energy consumption of these operations is shown
in Table I. A page is the basic unit for read/write operations. Due
to the write-once feature, a page cannot be overwritten. There-
fore, flash memory performs out-place updates. That is, data is
written to a free page, and the old page is invalidated. Those
with invalid data are called dead pages. After a certain number
of writes, free space on flash memory would be low. When the
free space is lower than a threshold value, flash memory must
reclaim dead pages through erase operations. Such reclaiming
process is called garbage collection. Erasing is done in a unit
of one block. Since a block consists of multiple pages, live
pages of the victim block must be copied to free space before
the block is erased. This is considered as garbage collection
overhead. Frequent garbage collection does not only incur sig-
nificant energy overhead, it also shortens the lifetime of flash
memory since flash memory has limited number of erase opera-
tions. To achieve efficient garbage collection, ideally, we want to
find a victim block with only dead pages. In this way, we could
release most free pages with least copying overhead through
garbage collection. Therefore, one key principle to achieve ef-
ficient garbage collection is to allocate data accessed close in
time (i.e., locality) to the same flash block [1], [21]. Since these
data will be invalidated together after a period of time, we are
more likely to find a victim block with only very few live pages
for garbage collection.

From the above discussion, we know that reducing writes
to flash memory is critical for energy optimization of flash
memory. Eliminating writes not only reduces energy consumed

1063-8210/$25.00 © 2008 IEEE

LI et al.: ENERGY-AWARE FLASH MEMORY MANAGEMENT IN VIRTUAL MEMORY SYSTEM 953

for handling writes. More importantly, it results in less frequent
garbage collection which could be a significant part of flash
memory energy once flash memory has been used for a period
of time. Reducing writes can be done in two ways: one is to
filter out unnecessary write requests from the OS kernel; the
other is to reduce copying overhead from garbage collection.
In this paper, we exploit these two flash properties for energy
optimization of the secondary storage in the virtual memory
system. We make the following contributions.

1) We identify one type of data locality that is inherent in ac-
cesses to flash memory in the virtual memory system. In the
virtual memory system, a page fault results in series of flash
writes. We refer to this locality as intrapage locality. For ef-
ficient garbage collection, we would like to allocate flash
pages of the same memory page to the same flash block.
Destroying intrapage locality (i.e., flash pages of the same
memory page are scattered in two different blocks) could
potentially result in significantly higher energy consump-
tion of flash memory. One interesting example is that the
threshold value triggering garbage collection could affect
how well intrapage locality is preserved during garbage
collection and for subsequent writes. We observe that two
garbage collection threshold values differing only by one
could actually result in more than 40% energy differences.

2) We study the effect of subpaging to filter out unnecessary
writes to flash memory. In the traditional virtual memory
system, the full victim page is written back to the disk when
a page miss occurs. While this is OK for a disk, it is not
energy-efficient for flash memory. A 4 K virtual memory
page results in eight writes to flash memory assuming a
512 B flash memory page. We observed that a victim page
often contains unmodified data. Therefore, writing a full
page results in unnecessary writes to flash memory. Al-
though subpaging reduces writes to flash memory, intra-
page locality no longer exists. If the energy benefit of re-
ducing writes through subpaging cannot compensate the
adverse effect of losing intrapage locality, subpaging could
possibly increase energy consumption of flash memory.
The experimental results show that subpaging reduces flash
energy by 15.8% on average assuming a main memory
pages contain eight flash pages.

3) We propose to add an SRAM to cache frequent writes
to flash memory. This cache is called HotCache in this
paper. To increase cache utilization, we investigate two ap-
proaches for HotCache management. In the first approach,
every write is cached and the replacement policy is based
on both the access time and frequency factors (TF policy).
The second approach is to identify frequently written data
and only those data are stored in the cache. One problem
particular to flash cache management is that higher cache
hit rate does not necessarily result in more energy savings.
In addition to cache hit rate, preserving intrapage locality
when writing back data from HotCache to flash memory is
critical. The experimental results show that the TF policy
with page locality gathering can achieve 16.3% energy re-
duction with a 1 M cache.

4) We exploit data redundancy between the main memory and
flash memory to reduce the copying overhead of garbage

Fig. 1. The flash memory storage system architecture.

collection. When a main memory page is swapped in, this
page exists in both the main memory and flash storage.
This page will be written back to flash memory if it is dirty
when it gets swapped out next time. The old copy in flash
memory becomes dead pages. Therefore, we could reduce
garbage collection overhead by not copying these flash
pages of a victim block. The experimental results show du-
plication-aware garbage collection reduces flash energy by
24.1% on average.

The rest of the paper is organized as follows. Section II
introduces background knowledge of flash memory. Section III
then describes important characteristics of the virtual memory
system using flash memory as a swap device. The details
of the proposed energy efficient flash memory management
is presented in Section IV. Experimental methodology and
results are described in Section V and Section VI, respectively.
Section VII discusses related work. Finally, Section VIII con-
cludes this paper.

II. BACKGROUND

Fig. 1 shows the architecture of the flash memory storage
system. The flash memory storage system consists of the flash
translation layer (FTL), memory technology device (MTD)
driver, and the flash memory chips. Data in flash memory
is identified by operating system using LBAs (logical block
addresses) to emulate a block device. FTL handles address
translation between LBAs and physical address on flash

954 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 8, AUGUST 2008

Fig. 2. NAND flash architecture.

memory. Besides, FTL is also responsible for garbage col-
lection and data allocation on flash memory. The MTD layer
provides handling routines for read, write and erase operations
between flash memory and FTL. In this section, we detail the
flash memory architecture, garbage collection policy, and data
allocation method for efficient garbage collection.

A. Flash Memory Architecture

Fig. 2 shows a typical architecture of a NAND flash memory.
A NAND flash memory is organized in blocks, and each block
contains a fixed number of pages. A block is the smallest unit
for erase operations, while reads and writes are processed in
terms of pages. The block and the page size of a typical NAND

flash memory are 16 kB and 512 B, respectively. There is a
16-byte spare area appended to every page. Bookkeeping in-
formation, such as a page’s logical block address and erase
counts, are stored in spare areas. Each page and its spare area
can be read/written independently, and they are wiped together
on erase. Each flash block has a limited number of erase opera-
tions. With current technology, a block of a typical NAND flash
memory could be erased for 1 million times. A block is con-
sidered as being worn out if its erase cycle count exceeds the
limitation. Once a block is worn out, it could suffer from fre-
quent write errors.

Due to the write-once feature, flash memory performs out-
place updates. A written page can not be rewritten unless it is
erased. When the data on a page are updated, the new data is
written to free space and the old copies of the data are inval-
idated. A page is referred to as a live page if it contains valid
data, and a dead page if it contains invalidated data. A dead page
becomes a free page through an erase operation. After a cer-
tain number of write operations, the free space on flash memory
will be low, garbage collection will be triggered to reclaim dead
pages by erasing a block, which is called the victim block. The
live pages of the victim block must be copied to free pages be-
fore a block being erased.

Because of out-place update and garbage collection, the
physical location of an LBA changes from time to time. FTL
provides transparent address translation between LBAs and
physical address by using a RAM-resident translation table.
The translation table is indexed by LBA, where each triple
(bank num,block num,page num) indicates its corresponding

Fig. 3. Data allocation (a) without and (b) with hot–cold separation.

bank number bank num, block number block num, and page
number, page num. The table can be rebuilt at system boot time
by scanning the block allocation map (BAM) which is stored in
flash memory. BAM is an array indexed by physical address,
and keeps the page state (e.g., free, valid or dead).

B. Garbage Collection (GC)

Garbage collection is triggered when the free space of flash
memory is equal to a predefined threshold value. Since valid
pages of a victim block must be copied before being erased, one
of the goals of garbage collection is to minimize the copying
overhead. A well-known garbage collection policy is the greedy
policy which always recycle the block with the largest number
of dead pages. The greedy policy is proven to be efficient when
data are uniformly accessed. If the workload has some fre-
quently updated data, which is known as hot data, the garbage
collection policy should avoid copying hot data since such data
would usually become invalid soon. However, the greedy policy
is not aware of data update frequency therefore cannot avoid
copying hot data. To solve this problem, the cost-benefit policy
is proposed [7]. The cost-benefit policy reclaims the block with
largest cost-benefit which is calculated as

age

where age stands for the time past since last modification of the
block (i.e., the last page write or invalidation), and for the live
pages in the block. The term represents the cost for copying
(for read valid pages and for write back these pages), and

represents the free spaces reclaimed. The cost-benefit
policy avoids recycling a block containing recently invalidated
data because the policy considers that more data on the block
will be invalidated soon. Since the cost-benefit policy is more
efficient than greedy, we adopt the cost-benefit policy as our de-
fault garbage collection policy in this paper.

C. Data Allocation: Locality Gathering

One commonly used approach to reduce copying overhead
of garbage collection is to allocate frequently written data (hot
data) in the same block. This is also called locality gathering.
Consider the example shown in Fig. 3. In Fig. 3(a), hot data are
scattered in two blocks, while in Fig. 3(b), hot data are clustered
in one block. We assume that after a period of time, all hot data
are accessed, and the cold data remain valid. For the data allo-
cation where hot data are clustered [Fig. 3(b)], block A contains

LI et al.: ENERGY-AWARE FLASH MEMORY MANAGEMENT IN VIRTUAL MEMORY SYSTEM 955

Fig. 4. Hot–cold separation mechanism: two-level LRU.

only dead pages. Therefore, it incurs zero copying overhead if
the block A is selected as the victim. As for the data allocation
shown in Fig. 3(a), dead pages are distributed in two blocks.
Therefore, selecting either block as the victim incurs copying
overheads. Reducing garbage collection overhead has signifi-
cant impact on energy since it results in less frequent garbage
collection. Therefore, data allocation with locality gathering is
critical for designing an energy efficient flash storage.

Several studies have proposed methods to perform locality
gathering. The eNVy system [21] proposes to allocate hot data
towards the lower numbered blocks while cold data in the op-
posite direction. In eNVy, data are always written to the tail of
a block, therefore, data near the end are considered as hot data.
During garbage collection, pages at the head of the victim block
are copied to higher numbered block, while pages near the end
are copied to the opposite direction.

The other approach for locality gathering is the hot–cold
separation mechanism proposed by Chang et al. [1]. They use
two-level LRU lists for hot/cold data identification as shown
in Fig. 4. An LBA is first inserted into the second-level LRU,
and is promoted to the first-level list if the LBA is written again
before being evicted from the second-level list. If the first-level
list is full, the last element of first-level list is put back to the
second-level list. The LBAs recorded in the first-level list are
considered as hot data. Two pointers are maintained to record
the blocks that are currently used to store hot and cold data.

III. FLASH MEMORY AS SWAP DEVICE

Fig. 5 shows the virtual memory system using flash memory
as the secondary storage. In the virtual memory system, on a
page fault, if the faulting page exists in the swap device, the
kernel obtains its LBAs from the page table. The page slot in
the swap area is reused as long as it is not overwritten. So a
clean victim page is not written back to the swap device if its
page slot is not overwritten. When a page fault occurs, if the
victim page is dirty or it does not exist in the swap device, a
series of writes are issued to flash memory. The faulting page
is then swapped in through a series of read requests. For a 4 k
main memory page, and 512 B flash page, a page fault incurs
eight reads/writes to flash memory. That is, flash pages of a
main memory page are always accessed back to back. This is
referred to as intrapage locality in this paper. From the discus-
sion in Section II-C, we understand the importance of allocating

Fig. 5. Flash memory as a swap device.

Fig. 6. Data allocation with/without intrapage locality.

data that are accessed close in time to the same flash block. With
the same reasoning, preserving intrapage locality is important
for efficient garbage collection. Consider two data allocation
methods shown in Fig. 6. Assume a main memory page con-
tains eight flash pages. In Fig. 6, two flash blocks contain four
main memory pages A, B, C, and D. In Fig. 6(a), flash pages
in one main memory page are allocated in one block, while in
Fig. 6(b), they are scattered in two blocks. Assume after a period
of time, memory page A and B are swapped out. Therefore, for
the data allocation in Fig. 6(a), block X contains only dead flash
pages, while for the data allocation in Fig. 6(b), both block X
and Y contain dead and live pages. Therefore, destroying intra-
page locality could cause adverse effect on garbage collection
efficiency thereby increasing overall energy consumption.

One example that affects how well intrapage locality is pre-
served is the threshold value GC that triggers garbage collec-
tion. Garbage collection occurs when the number of free pages
is equal to GC . Fig. 7 shows the overall flash energy consump-
tion normalized to the case GC with GC varying from
255 to 288 for mozilla, a web browsing application. This set of
experiment assumes that a flash block contains 32 flash pages,
and a virtual page contains eight flash pages. We can observe
that for threshold value 256, 264, 272, 280, and beyond, we get
lowest normalized energy. To analyze this behavior, we divide
different GC values in three categories. In the discussion below,
we assume that a main memory page contains flash pages, a
flash block contains flash pages, mod , and intrapage
locality is preserved before the first garbage collection.

956 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 8, AUGUST 2008

Fig. 7. Overall flash energy consumption under different GC thresholds.

Fig. 8. Case1: n = 16,m = 4, and GC = 20.

• GC mod
Fig. 8 illustrates the case where , , and
GC . Since GC mod , when garbage collec-
tion is triggered, the number of free pages of the currently
written block (block 3 in this example) must be a multiple
of . Since data are invalidated in the granularity of m
pages, the number of live pages of the victim block must
be also a multiple of . Therefore, we could guarantee that
intrapage locality is not destroyed by garbage collection. In
the example shown in Fig. 8, flash pages of main memory
page A and B are allocated to the same block, respectively.
Moreover, the number of live pages in block 4 (currently
written block) is a multiple of after garbage collection
so the intrapage locality of subsequent writes will be pre-
served.

• GC mod
In this case, the number of free pages of the currently
written block is always more than pages, and garbage
collection is triggered in the middle of writing back a main
memory page. Fig. 9 illustrates this scenario where block
3 is the currently written block, and garbage collection oc-
curs while the main memory page A is written back to flash
memory. Since the maximal number of live pages of the
victim block should not be more than according
to the cost-benefit policy described in Section II-B, these
live pages are guaranteed to be allocated to block 3. After
garbage collection, FTL continues writing the remaining

Fig. 9. Case2: n = 16,m = 4, and GC = 25.

flash pages of the main memory page A to block 3. So in-
trapage locality is preserved, and the live pages of block
3 after garbage collection is still a multiple of . There-
fore, the intrapage locality of subsequent writes will be pre-
served.

• GC mod and GC mod
For threshold values that do not meet the above two con-
ditions, if the currently written block has more free pages
than live pages of the victim block, intrapage locality will
be preserved during garbage collection. Otherwise, one
live page of the victim block will be forced to split into two
different blocks. Fig. 10 illustrates this scenario. Assume
GC , and garbage collection occurs while the main
memory page E is written back to flash memory. Since
the free pages of block 3 is less than the live pages of the
victim block, pages B are allocated in block 3 and 4. After
garbage collection, FTL continues writing the remaining
flash pages of main memory page E to block 4. So the intra-
page locality of page E and B are destroyed. Furthermore,
the intrapage locality of subsequent writes will also be de-
stroyed if either page E or B gets invalidated later and the
corresponding block is selected as the victim for garbage
collection. In the example shown in Fig. 10, let us assume

LI et al.: ENERGY-AWARE FLASH MEMORY MANAGEMENT IN VIRTUAL MEMORY SYSTEM 957

Fig. 10. Case3: n = 16,m = 4, and GC = 23.

pages A, B, C, D are invalidated. Garbage collection is trig-
gered while writing back page F, and block 3 is chosen as
the victim. So live page E is copied to block 4, and writing
main memory page F continues after garbage collection.
We can see that after writing main memory page F com-
pletes, the number of live pages of the currently written
block (block 4) is no longer a multiple of . So for the
subsequent write, page G in this example, its intrapage lo-
cality cannot be preserved.

IV. ENERGY-EFFICIENT FLASH MEMORY MANAGEMENT

In this section, we describe three techniques to reduce the en-
ergy consumption of flash memory in the virtual memory en-
vironment. To reduce unnecessary writes to flash memory, we
divide a main memory page into a set of subpages, and only dirty
subpages are written into the flash memory when a page fault oc-
curs. An SRAM is used to cache frequently written data, which
is called HotCache. The third technique is duplication-aware
garbage collection.

A. Subpaging

In the traditional virtual memory system, a full victim page
is written back to the disk when a page miss occurs. A typical
flash page size is 512 B or 2 kB, while a main memory page size
could be 4 kB, 2 MB, or 4 MB. With a 4 kB virtual memory
page and 512 B flash page, each page fault incurs eight writes
to flash memory. For the applications tested in this paper, we
find that the victim page often contains a significant amount of
unmodified data. Table II shows the ratio of dirty blocks in a
victim page assuming a 512 B block, and 4 K virtual memory

TABLE II
DIRTY RATIO OF WORKLOADS1

page. We can see that only very few applications, e.g., gqview,
have high dirty ratio. For mozilla, the dirty ratio is below 50%.
Therefore, writing a full victim page to flash memory is not
energy efficient.

The subpaging technique divides a virtual memory page into
a set of subpages. The subpaging technique was previously
proposed to reduce the transferring size and latency of remote
memory in a networked system [5]. To tailor the subpaging
technique for flash memory, we divide a page in the granularity
of flash page size. Each subpage is associated with a dirty
bit. On a page fault, only dirty subpages are written into flash
memory. Park et al. [10] proposed a new replacement policy,
clean first least recently used (CFLRU), to reduce writes to
flash memory by keeping dirty pages in memory as long as pos-
sible. Although this method reduces the energy consumption
of flash memory effectively, it could incur more page faults.
In contrast, the subpaging technique reduces writes to flash
memory without increasing page faults.

B. HotCache

To reduce writes to flash memory, we propose to keep fre-
quent writes to an SRAM, which is referred to as HotCache in
this paper. There exist products that integrate SRAM and flash
memory in one package [15]. HotCache is organized as a fully
associative cache with the HotCache block size equal to the page
size of flash memory.

The HotCache management policy affects the performance of
the HotCache. eNVy [21] proposed to use an SRAM as a write
buffer. That is, every write request is cached and the first in first
out (FIFO) policy is adopted for replacement. In this paper, we
investigate three new policies for the HotCache management.
Below we detail these three policies.

Time-Frequency (TF): In the Time-Frequency policy, every
write request is cached in HotCache. The replacement is based
on the following weight function:

timestamp write counts

The HotCache block with the smallest weight is selected as the
victim when a replacement occurs. This policy considers both
the time and frequency factors. The advantage of this TF policy
over the traditional LRU is that it prevents a hot page from being
replaced by a recently accessed cold page.2

Time-Frequency-Locality (TFL): With the TF policy de-
scribed above, the flash pages of a virtual memory page is not
guaranteed to be allocated in the same block since they may

1The dirty ratio is defined as the number of dirty 512 B block in a dirty
memory page/the number of 512B blocks in a main memory page.

2Hot (cold) pages are those frequently (rarely) accessed.

958 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 8, AUGUST 2008

Fig. 11. Modified FTL for HotCache.

not be replaced out of the HotCache in sequence. Therefore,
to avoid destroying intrapage locality, we enhance the TF
policy by forcing all the pages of the same virtual memory
page to be replaced in sequence. The virtual page number of
the victim block is recorded and a counter is used to keep
track of how many HotCache blocks in the same main memory
pages have been replaced. A HotCache block with the smallest
timestamp write counts and has the same recorded virtual
page number is chosen as the victim HotCache block. Once
the counter reaches zero, a HotCache block with smallest
timestamp write counts is selected as the victim. Its main
memory page number is then recorded and the counter is reset.
Note that since the virtual memory page number of a HotCache
block can be obtained directly from the cache tag,3 we do not
need to record the page number of each HotCache block. The
enhanced TF policy is called TF-locality (TFL).

Two-Level LRU (2L): Different from the TF and TFL poli-
cies, the two-level LRU policy observes a page for a period
of time to determine whether this page should be allocated in
HotCache. Similar to hot/cold data separation policy proposed
by Chang et al. [1]. we use the first-level LRU list records the
pages considered as hot data, and the second-level list records
the pages considered as the candidates to be hot data. The dif-
ference is that we allocate hot data, which pages are recorded
in first level list, to HotCache, and cold data are written to flash
memory.

The length of the first-level LRU is the number of HotCache
blocks. That is, every HotCache block has a corresponding entry
in the first level LRU list. Note that the 2L policy does not de-
stroy the intrapage locality since it considers only the time factor
for replacement. Therefore, flash pages in the same virtual page
are guaranteed to be replaced back to back.

Modifications to Support HotCache: To support the Hot-
Cache architecture, modifications across each layer of flash
storage system are also required. FTL needs to handle the
HotCache management as shown in Fig. 11. The write handling
routine is modified to support the HotCache as follows: if the
requested LBA exists in the HotCache, the write is performed
directly in the HotCache. Otherwise, if the HotCache manage-
ment policy determines that the LBA should be allocated in the

3virtual page number = cache tag � flash page size � main memory
page size.

HotCache, the block in flash memory is invalidated, data are
written into the HotCache, and the replaced HotCache block is
written back to the flash. Algorithm 1 summarizes the modified
write handling routine.

Algorithm 1: Handle Write Request

1: if LBA exists in HotCache then

2: update the LBA on HotCache

3: else

4: if HotCache Policy(LBA) = HotCache then

5: write back victim(HotCache)

6: invalidate the original copy

7: write LBA in HotCache

8: else

9: write to flash memory

10: end if

11: end if

Because the physical address has been changed from a triple
to a 4 tuple, the MTD layer must be enhanced to handle the
address. As MTD receives an physical address belongs to Hot-
Cache, MTD can translate the read/write requests into SRAM
access commands.

C. Duplication-Aware Garbage Collection (DA-GC)

DA-GC is to exploit data redundancy between the main
memory and flash memory to eliminate unnecessary live page
copying during garbage collection. When a main memory page
is swapped in, this page exists in both the main memory and
flash storage. This page will be written back to flash memory
if it is dirty when it gets swapped out next time. The old copy
of flash memory becomes dead pages. Therefore, we could
reduce live page copying in garbage collection by not writing
these flash pages of a victim block to free space. Therefore,
in the proposed duplication-aware garbage collection scheme,
when garbage collection occurs, FTL does not move live pages
that are found in the main memory to free space. To ensure the
correctness of the swap system adopting DA-GC, those flash
pages that are omitted during garbage collection are guaranteed
to be written back to the flash memory when they are swapped
out of the main memory. DA-GC reduces writes to those flash
pages that are dirty at the time of garbage collection or will
become dirty later. For those pages remaining clean to the time
they get swapped out of the main memory, DA-GC delays those
writes that would have occurred during garbage collection to
the swap-out time.

To realize this idea, as shown in Fig. 12, we add three fields
in the BAM of FTL: PID (process id), virtual page number
(VPN) and the in-memory flag. When a dirty (or new) memory
page is swapped out, the swap system sends a write request to
FTL along with this page’s LBA, process identifier, and virtual
page number. FTL searches the BAM with the requested LBA.
The process identifier and virtual page number is recorded
in the matched entry, and the in-memory flag is cleared to
indicate that the corresponding flash page does not exist in the

LI et al.: ENERGY-AWARE FLASH MEMORY MANAGEMENT IN VIRTUAL MEMORY SYSTEM 959

Fig. 12. DA-GC.

main memory. When a page is swapped into the main memory,
FTL sees a read request, and sets the corresponding in-memory
flag. Note that in the conventional swap system, FTL is not
aware of the swap-out events of clean pages. Therefore, to
support DA-GC, we add a swap clean call to notify FTL the
swap_out event of a clean page. The other issue that we need
to address to support DA-GC is to guarantee the write back of
those flash pages that are omitted during garbage collection. To
achieve this, FTL notifies the kernel of the associated PID and
virtual page number of omitted flash pages with a swap free
call which sets the dirty bit of the matched PTE (page table
entry). In the case of shared memory, swap free may fail to find
the matched PTE. Assume memory page X is shared between
process A and B. If process A is selected by the kernel to swap
out page X, process A’s identifier and corresponding virtual
page number are recorded in the BAM. Assume memory page
X is later swapped in by process B. Since the BAM is indexed
with LBAs, the in-memory flag can be set correctly. When
the flash pages of memory page X are omitted during garbage
collection, FTL calls swap free with process A’s identifier. If
process A has not read memory page X, the corresponding
PTE is actually invalid. In this case, swap free should return a
failure to disable DA-GC. The other case that swap free needs
to return a failure is when a process detaches shared memory.
The detach operation invalidates corresponding PTEs of the
shared memory. Therefore, swap free is not able to find the
matched PTEs if the associated shared page has been detached.

TABLE III
WORKLOADS USED IN OUR EXPERIMENTS AND THEIR CHARACTERISTICS

TABLE IV
SIMULATION PARAMETERS

V. EXPERIMENTAL METHODOLOGY

We adopt a trace-driven simulation in this paper. Our simu-
lator contains a main memory paging system and flash storage
with an SRAM. We use Valgrind [9] on an x86-linux machine to
collect memory traces. The applications we tested in this study
are listed in Table III: kword, a word processor; mozilla, a web
browser; kspread, a spreadsheet application; openoffice, a pop-
ular office suite similar to Microsoft office; gqview, a image
viewer. We also create multiprogramming workloads by run-
ning juk, an MP3 jukebox program, with applications listed in
Table III. The OS adopts the round-robin scheduling policy.

We assume the physical memory allocated to user programs
is 16 MB, and the main memory page size is 4 kB. The virtual
memory is managed using the LRU policy. For flash memory,
we assume a 16 kB block with 512 B page size or a 128 kB
block with 2 kB page size. We adopt the cost-benefit policy [7]
as our garbage collection policy. We assume the initial utiliza-
tion of flash memory is 97%. The SRAM sizes of the HotCache
considered in this paper are 512 kB and 1 MB.

The access energy of SRAM and flash memory assumed
in our experiments are listed in Table IV. The SRAM access
energy is obtained using the CACTI [17] assuming 0.13 m
technology. The CACTI is an integrated cache access time,
power and area model, and has been widely used in studies
on cache architecture [4], [18]. The energy consumption
of flash memory are based on the data sheet of Samsung
K9F1208R0B [14] page size B and K9K2G08X0A
[16] page size kB NAND flash.

VI. SIMULATION RESULTS

A. Subpaging

Fig. 13 shows the energy consumption of the subpaging
technique normalized to the baseline storage system (without

960 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 8, AUGUST 2008

Fig. 13. Relative energy consumption of subpaging technique in 512 B and 2 kB flash page size.

TABLE V
WRITE HIT RATES OF HOTCACHE MECHANISMS (HOTCACHE SIZE: 512 kB/1 MB)

subpaging) assuming both the 512 B and 2 kB flash page size.
We also show write reduction rates in Table VI. We can see
that with a 512 B flash page, the subpaging could reduce up to
59.1% writes and 36.5% of flash energy (mozilla+juk). Since
there are only few writes in gqview, the subpaging technique
only reduces 1.1% of writes. Note that gqview shows slight
increases in energy consumption after applying subpaging.
Although subpaging reduces writes to flash memory, intrapage
locality no longer exists. If the energy benefit of reducing writes
through subpaging cannot compensate the adverse effect of
losing intrapage locality, as in the case of gqview, subpaging
could increase energy consumption. With a 2 kB flash page,
the subpaging is less effective since a main memory page only
contains two flash pages. The effects of subpaging depends
on the dirty ratio which is defined in Section IV-A. The lower
the dirty ratio is, the higher energy reduction we expect to see
by adopting subpaging. In single-programming workloads,
mozilla and openoffice show most significant energy reduction
via subpaging since the dirty ratio of these two applications are
much lower than others. Multiprogramming workloads show
lower dirty ratio than single-programming ones since there are
more contention for the memory resource. With a 512 B flash
page, the subpaging achieves about 22.2% energy saving on

TABLE VI
REDUCED WRITES BY SUBPAGING

the average for multiprogramming workloads, and 10.4% for
single-programming workloads.

B. HotCache

In this section, we evaluate the HotCache hit rates and energy
efficiency of various caching policies discussed in Section IV-B.
We also show two commonly used policies: FIFO and LRU.
Table V list the write hit rates and energy reductions of a 512 kB
and 1 MB HotCache, respectively.

From Table V, we can see that the TF policy has the highest
HotCache hit rate, 5.07% for a 512 kB cache and 13.75% for a
1 MB cache. The FIFO policy used in eNVy [21] has A much
lower hit rate compared with the TF policy, 0.41% for a 512 B

LI et al.: ENERGY-AWARE FLASH MEMORY MANAGEMENT IN VIRTUAL MEMORY SYSTEM 961

Fig. 14. The average energy consumption under different HotCache schemes (HotCache size: 512 K).

TABLE VII
GARBAGE COLLECTION FREQUENCY AND COPYING OVERHEAD

OF MOZILLA+JUK UNDER DIFFERENT HOTCACHE SCHEMES

(HOTCACHE SIZE: 512 kB)

cache and 3.34% for a 1 MB cache. Although the TFL policy has
lower hit rates than TF, it achieves best energy savings. With a
1 MB HotCache, the TFL policy could reduce about 16.3% of
flash energy on the average.

One problem particular to the cache management is that
higher cache hit rate does not necessarily result in more energy
savings. For example, for mozilla+juk, with a 512 kB cache,
the TF policy has higher cache hit rate than TFL as shown
in Table V (6.20% versus 5.67%), but it achieves less energy
savings than TFL. The cause of this abnormal behavior is that
the TF policy destroys intrapage locality. This results in higher
garbage collection overhead. Fig. 14 shows the energy normal-
ized to the baseline architecture (without the HotCache) for
various cache management policies. We break down the energy
consumption of the HotCache scheme into four components:
garbage collection, write, read and accessing HotCache. We
can see that the TF policy has higher garbage collection energy
than TFL in almost every application. For mozilla+juk, the
TF policy incurs about 13.7% more garbage collection energy
than TFL. Table VII shows the normalized garbage collection
frequency and average copying overhead incurred by each
garbage collection for mozilla+juk. We can see that with the
TF policy, the garbage collection frequency is higher than the
baseline, and the copying overhead is increased by 8%, while
other policies are beneficial for reducing the garbage collection
frequency and copying overheads.

C. Duplication-Aware Garbage Collection

To understand the effectiveness of the duplication-aware
garbage collection, we report the average number of flash
pages of the victim block that exist in the main memory, and

the distribution of dirty versus clean pages in Table VIII. Note
that those flash pages that are clean at the time when garbage
collection occurs, but become dirty later are also counted as
dirty pages in Table VIII. For mozilla and kspread, the DA-GC
scheme reduces close to half of the live page copying. And more
than 70% of these omitted pages are dirty pages. The average
garbage collection overhead reduction rate ranges from 17.25%
to 54.34%. As mentioned in Section II-C, reducing garbage
collection overhead results in less frequent garbage collection.
In Table IX, we report the reduction percentage of garbage
collection frequency after applying duplication-aware garbage
collection. We can see the reduction rates ranges from 7.71%
to 53.80%. This leads to significant overall energy reduction
as shown in Fig. 15. For mozilla, we see up to 50% of energy
reduction. The average energy reduction rate is 24.1%.

D. Analysis of Overall Energy Reduction

Fig. 16 shows the combined effect of HotCache, Subpaging,
and DA-GC. In this set of results, we assume 1 MB HotCache
managed in the TFL policy, and 512 kB flash pages. We
also compare our scheme with the workCFLRU [10], which
proposed a new virtual memory replacement policy to reduce
writes to flash memory. Since the CFLRU could incur more
page faults, we plot the number of page faults of the CFLRU
normalized to the baseline architecture in Fig. 16.

The experimental results show that the energy reduction of
adopting a 1 MB HotCache, subpaging, and DA-GC together
ranges from 9.3% to 75%, and 42.2% on the average. The
CFLRU is also quite effective in saving flash memory energy
except for applications that have many writes, e.g., gqview,
since the CFLRU is not able to find clean pages to replace in
this case. The main problem of the CFLRU is its impact on per-
formance. From Fig. 16, we can see that the CFLRU increases
the number of page faults significantly for several applications,
such as kspread+juk (44.7%). In contrast, our scheme achieves
energy savings without causing adverse effect on performance.

Since the three schemes proposed in this paper are orthogonal
to the CFLRU, we also evaluate the combined effects of the
CFLRU and our scheme in Fig. 16. The results show that using

962 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 8, AUGUST 2008

TABLE VIII
AVERAGE NUMBER OF DUPLICATED PAGES AND GARBAGE COLLECTION OVERHEAD REDUCTION OF DA-GC

TABLE IX
GARBAGE COLLECTION FREQUENCY REDUCTION OF DA-GC

Fig. 15. Overall energy reduction of DA-GC.

Fig. 16. Combined effect of HotCache, subpaging and DA-GC.

LI et al.: ENERGY-AWARE FLASH MEMORY MANAGEMENT IN VIRTUAL MEMORY SYSTEM 963

the CFLRU on top of our scheme could further reduce the flash
memory energy by 12% at most in mozilla+juk. Therefore, for
applications that could trade performance for energy savings,
we could use the CFLRU and HotCache/subpaging together to
achieve higher energy savings.

VII. RELATED WORK

Previous works combine SRAM with flash memory mainly
for performance consideration. Wu et al. [21] propose the
eNVy system adopting SRAM as write buffers to allow better
response time of flash memory and reduce invalidations from
write merges. They also propose a locality-gathering garbage
collector to achieve even wearing. Park et al. [11] propose a
NAND XIP architecture applying an SRAM with priority-based
caching which application codes with high access frequencies
are more likely to be kept in cache. The NAND XIP also use
cache prefetching to reduce the access latency to the same level
with NOR flash. Both the priority-based caching and prefetching
information are gathered through profiling information. Douglis
et al. [3] first studied the energy consumption issue of flash
memory with SRAM write buffer. Their experiments show
that SRAM buffering is beneficial for both response time and
energy saving.

In the aspect of SRAM caching policies for storage devices,
a great number of works were done for hard disk based storage
system. For example, Robinson et al. [12] propose using fre-
quency-based replacement (FBR) rather than ordinary LRU to
gain better performance on disk caches. The FBR maintains ref-
erence counts for blocks in the cache, and evicts the block with
smallest reference counts among least recently used blocks. Lee,
et al. [8] propose least recently/frequently used (LRFU) policy
which weighting each block with reference count and age to cal-
culate to combined recency and frequency (CRF), and the block
with smallest CRF value will be replaced as cache is full. Zhou
et al. [22] propose multi-queue (MQ) policy, which maintains
multiple LRU queues. The policy promote a block to higher
level queue when its access frequency arriving some threshold,
and demoted least recently used block to lower level queue when
the queue is full. Our paper is the first exploring the SRAM
caching issues on flash memory based storage system. The TF
policy proposed in this paper is simplified from LRFU, and the
2L policy is also an MQ implementation with number of queues
is set to two.

In the area of virtual memory system, Park et al. [10] pro-
pose applying demand paging mechanism as an alternative for
traditional shadowing architecture to reduce retention energy of
DRAM-based main memory. To achieve better energy saving,
they also propose a new replacement policy, CFLRU, to reduce
writes to flash memory by keeping dirty pages in memory as
long as possible. The subpaging technique [5] is first used to
reduce transfer latency in a networked system. This paper is
the first to study the effect of subpaging for energy savings of
flash memory. Jung et al. [6] proposed flash-aware swap system
(FASS), which uses page table instead of FTL layer, and using
paging information in operating system to identify which page
slot is unused to save garbage collection overhead.

Other works on flash memory look at how to reduce garbage
collection overheads and increase I/O access parallelism.

Conventional greedy garbage collection policy cannot avoid
recycling frequently modified data, which may be invalidated
soon after, and results in more garbage collection overhead.
Addressing on the problem, Rosenblum et al. [13] propose
a cost-benefit garbage collection policy using value-based
heuristic considering both reclaiming overhead and data up-
date frequency for log-structured file systems. Kawaguchi et
al. [7] modified the calculation cost-benefit values for flash
memory systems. Instead of calculating the cost-benefit value
as age , Kawaguchi et al. choose to reclaim
the data segment with largest age due to the
different writing costs for hard disk and flash memory. Chiang
et al. [2] further modified cost-benefit garbage collector with
the calculation of erase count per block to achieve evenly
wearing. Chiang’s work also keeps the update count of each
LBA for identifying hot data, and clusters hot data together to
further reduce garbage collection overhead. Chang et al. [1]
propose the adaptive stripping architecture to exploit the I/O
parallelism from multibanked flash memory system by using
dynamic bank assignment policy rather than static policies.
They also propose the use of hot–cold data separation for
reducing garbage collection overhead and balancing the bank
access frequencies. Rather than the hot–cold separation method
used in the above work, Chang et al. designed a low cost and
efficient hot data identification method by maintaining two
LRU lists. Addressing on the energy consumption issue of
multibanked flash storage systems, Wu et al. [20] present an
architecture that supports programmed I/O to prevent processor
from wasting cycles. By reordering the I/O requests, the energy
for switching among power states can also be reduced.

VIII. CONCLUSION

In this paper, we propose three energy-efficient techniques
for flash memory management in the virtual memory system.
The subpaging technique divides a main memory page into a
set of subpages in the granularity of flash page size. On a page
fault, only dirty subpages are written back to flash memory in-
stead of a full main memory page as in the conventional vir-
tual memory system. The experimental results show the sub-
paging technique reduces about 15.8% of flash memory energy
on the average, and 21.2% for multiprogramming workloads.
The HotCache scheme stores frequent writes to reduce flash en-
ergy. We find that higher HotCache hit rate does not necessarily
lead to higher flash energy savings. The intrapage locality needs
to be preserved when writing data from the storage buffer to
flash memory. The TFL policy can achieve about 16.3% of en-
ergy saving. DA-GC exploits data redundance between the main
memory and flash memory to eliminate unnecessary live page
copying in garbage collection. The experimental results show
that DA-GC achieves up to 51% energy reduction. Joint use of
subpaging, HotCache, and DA-GC can reduce 42.2% of flash
memory energy on average.

REFERENCES

[1] L.-P. Chang and T.-W. Kuo, “An adaptive striping architecture for flash
memory storage systems of embedded systems,” in Proc. 8th IEEE
Real-Time and Embedded Technol. Appl. Symp., Sep. 2002, pp. 24–27.

964 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 8, AUGUST 2008

[2] M. Chiang, P. Lee, and R. Chang, “Managing flash memory in per-
sonal communication devices,” in Proc. 1997 Int. Symp. Consumer
Electronics (ISCE’97), Singapore, Dec. 1997, pp. 177–182.

[3] F. Douglis, F. Kaashoek, B. Marsh, R. Caceres, K. Li, and J. Tauber,
“Storage alternatives for mobile computers,” in Proc. 1994 Symp. Op-
erating Syst. Design Implementation, Nov. 1994, pp. 25–37.

[4] M. Huang, J. Renau, S.-M. Yoo, and J. Torrellas, “The design of
DEETM: A framework for dynamic energy efficiency and temperature
management,” J. Instruction-Level Parallelism, vol. 3, 2002.

[5] H. A. Jamrozik, M. J. Feeley, G. M. Voelker, J. Evans, A. R. Karlin,
H. M. Levy, and M. K. Vernon, “Reducing network latency using sub-
pages in a global memory environment,” in Proc. 7th ACM Conf. Archit.
Support Program. Languages Operating Syst., 1996, pp. 258–267.

[6] D. Jung, J.-S. Kim, S.-Y. Park, J.-U. Kang, and J. Lee, “Fass: A
flash-aware swap system,” in Proc. Int. Workshop Software Support
for Portable Storage, Mar. 2005.

[7] A. Kawaguchi, S. Nishioka, and H. Motoda, “A flash-memory based
file system,” in Proc. 1995 USENIX Tech. Conf., Jan. 1995, pp.
155–164.

[8] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C.-S.
Kim, “On the existence of a spectrum of policies that subsumes the
least recently used (LRU) and least frequently used (LFU) policies,”
Meas. Modeling Comput. Syst., pp. 134–143, 1999.

[9] N. Nethercote and J. Seward, “Valgrind: A framework for heavyweight
dynamic binary instrumentation,” SIGPLAN Not., vol. 42, no. 6, pp.
89–100, 2007.

[10] C. Park, J.-U. Kang, S.-Y. Park, and J.-S. Kim, “Energy-aware demand
paging on NAND flash-based embedded storages,” in ISLPED ’04: Proc.
IEEE/ACM Int. Symp. Low Power Electron. Design, pp. 338–343.

[11] C. Park, J. Seo, S. Bae, H. Kim, S. Kim, and B. Kim, “A low-cost
memory architecture with NAND XIP for mobile embedded systems,”
in Proc. 1st IEEE/ACM/IFIP Int. Conf. Hardware/Software Codesign
Syst. Synthesis, 2003, pp. 138–143.

[12] J. T. Robinson and M. V. Devarakonda, “Data cache management
using frequency-based replacement,” in Proc. ACM SIGMETRICS
Conf. Meas. Modeling Comput. Syst., May 1990, pp. 134–142.

[13] M. Rosenblum and J. Ousterhout, “The design and implementation of
a log-structured file system,” in Proc. 13th Symp. Operating System
Principles, October 1991, pp. 1–15.

[14] Samsung Electronics CO., LTD, Datasheet of Samsung K9F1208R0B
NAND Flash 2004.

[15] Samsung Electronics CO., LTD, Datasheet of Samsung OneNAND128
2004.

[16] Samsung Electronics CO., LTD, Datasheet of Samsung K9K2G08X0A
NAND Flash 2006.

[17] P. Shivakumar and N. P. Jouppi, CACTI 3.0: An Integrated Cache
Timing, Power and Area Model Compaq Comput. Corp., Aug. 2001,
Tech. Rep..

[18] S. Steinke, L. Wehmeyer, B. Lee, and P. Marwedel, “Assigning
program and data objects to scratchpad for energy reduction,” in Proc.
2002 Design, Automation Test Eur. Conf. Exhib., Mar. 2002, pp.
409–417.

[19] H.-W. Tseng, H.-L. Li, and C.-L. Yang, “An energy-efficient virtual
memory system with flash memory as the secondary storage,” in
ISLPED ’06: Proc. IEEE/ACM Int. Symp. Low Power Electron.
Design, pp. 418–423.

[20] C.-H. Wu, T.-W. Kuo, and C.-L. Yang, “Energy-efficient flash memory
storage systems with an interrupt emulation mechanism,” in CODES
+ ISSS 2004: Proc. IEEE/ACM/IFIP Int. Conf. Hardware/Software
Codesign Syst. Synthesis, pp. 134–139.

[21] M. Wu and W. Zwaenepoel, “eNVy: A non-volatile, main memory
storage system,” in Proc. Int. Conf. Archit. Support Program. Lang.
Operating Syst., Oct. 1994, pp. 86–97.

[22] Y. Zhou, J. Philbin, and K. Li, “The multi-queue replacement algorithm
for second level buffer caches,” in Proc. General Track: 2002 USENIX
Annu. Tech. Conf., 2001, pp. 91–104.

Han-Lin Li received the B.S. degree from the De-
partment of Computer Science and Information Engi-
neering, National Taiwan University, Taipei, Taiwan,
R.O.C., in 2005, where he is currently working to-
ward the Ph.D. degree.

His research interests include energy-efficient de-
sign and flash memory.

Chia-Lin Yang (M’02) received the B.S. degree
from the National Taiwan Normal University,
Taiwan, R.O.C., in 1989, the M.S. degree from the
University of Texas at Austin in 1992, and the Ph.D.
degree from the Department of Computer Science,
Duke University, Durham, NC, in 2001.

In 1993, she joined VLSI Technology Inc. (now
Philips Semiconductors) as a Software Engineer. She
is currently an Associate Professor in the Department
of Computer Science and Information Engineering,
National Taiwan University, Taipei, Taiwan. Her re-

search interests include energy-efficient microarchitectures, memory hierarchy
design, and multimedia workload characterization.

Dr. Yang is the recipient of a 2000–2001 Intel Foundation Graduate Fellow-
ship Award and 2005 IBM Faculty Award.

Hung-Wei Tseng received the B.S. and M.S. de-
grees from the Department of Computer Science
and Information Engineering at National Taiwan
University, Taipei, in 2003 and 2005, respectively.
He is currently working toward the Ph.D. degree in
Department of Computer Science and Engineering
at the University of California, San Diego.

His research interests include energy-efficient
computer system design and multicore processors.

