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研究工作詳述 

In this project we implement different schedulers on a discrete-time event-driven 
peer-to-peer streaming simulator1 provided by Zhang. For a fair comparison, all schedulers 
use the same overlay topology and simulation configuration. Following, we describe 
simulation configuration and evaluation metrics used in this work. Then, the discussion of 
impact of different parameter settings on the whole system is provided.  
 

Simulation Configuration  
We assume all nodes in our simulation are DSL/Cable link users, that is, upload and 

download bandwidth are asymmetric, and its distribution is shown in Table. 1. Note that the 
average outbound capacity is about 345kbps, which is 1.15 times of the average source 
streaming rate (i.e., bandwidth amplification ratio = 1.15). All nodes participate the session in 
the initial 5 seconds and each node randomly selects 15 nodes, suggested in [17], as its 
neighbor to construct a random overlay. All nodes stay until the simulation is terminated. The 
buffer map exchange interval is set to 500ms and the request period is set to 250ms. The 
upload capacity of the single source node is set to 2Mbps. Blocks are equal-sized with 1450 
bytes. Moreover, sliding window and streaming buffer are set to 12 sec and 62 sec, 
respectively.  

To generate the test video trace for streaming, we concatenate different types of CIF 
video sequence, which includes high motion (e.g. foreman and football) and low motion (e.g., 
akiyo and news) video sequences, to form roughly 4-minute test video sequence and encode 
the test sequence using dyadic encoding structure supported by JSVM 8.02 (the H.264/SVC 
reference software). To obtain a quality-smooth encoded stream, fixed quantization parameter 
(QP) for all GOP is employed. QP =34 is used to obtain a roughly 300 kbps video stream. We 
adopt frame-copy supported in JSVM8.0 to conceal errors caused by receiving deadline or 
other network conditions. The same video trace is repeatedly used in our simulation. These 

                                                 
1 http://media.cs.tsinghua.edu.cn/~zhangm 
2 cvs –d :pserver:jvtuser:jvt.Amd.2@garcon.ient.rwth-aachen.de:/cvs/jvt login 

cvs –d :pserver:jvtuser@garcon.ient.rwth-aachen.de:/cvs/jvt checkout jsvm 



configurations are summarized in Table 2. 
 

 Evaluation Metrics 
On the other hand, to evaluate the performance of each method, we employ (1) Block-level 

Delivery Ratio (2) Application-level Delivery Ratio (3) Peak-Signal-to-Noise-Ratio (PSNR) to 
evaluate the pure network throughput, the upper application-level perceived throughput and 
ultimately measured visual quality, respectively. They are defined as follows: 
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Note that due to the high decoding complexity, we merely sample 300 nodes for PSNR 
computation from 1000 nodes by default. 
 

 Performance Comparison 
Then we give the comparison of the proposed method with following methods: 

Random: Each node independently requests each of its desired blocks from a random selected 
neighbor who has the block. Chainsaw [6] applies this method. 

Local Rarest First (LRF): The blocks of fewer owners from the local view of a node should 
be requested first. Both BitTorrent [3] and CoolStreaming/DONet [5] employ this method. 

Quality-Optimized: The proposed decentralized method aiming to maximize the perceptual 
visual quality, which is solved via min-cost flow. 

Throughput-Optimized: Similar to Quality-Optimized. Differently, visual quality gain 
function is set to a fixed value for all blocks. In this case, each block is regarded as equal so 
that a maximum throughput schedule is figured out. 

Rarity-Priority-Optimized: This method aims to maximize the overall throughput using the 
concept that blocks with rarity should be requested first to make them spread more quickly. 

Similarly, just replace our visual quality gain function  to their rarity function  
[7]. 
 
 
 

Table 1: The network capacity distribution among peers 

Peer Inbound (kbps) Peer Outbound (kbps) Peer Ratio (%) 

3000 1000 10 



1500 384 50 

768 128 40 

 
 
 
 
 

Table 2: The settings of simulation parameter

Parameter Value 

Simulation Time 1200 s 

Request Period 250 ms 

Buffer Map Interval 500 ms 

Neighbor Count 15 

Block 1450 bytes 

Video H.264/SVC, JSVM 8.0, 

CIF, QP=34, 300 kbps 

Error Concealment Frame-Copy in JSVM 8.0

Source Capacity 2000 kbps 

Sliding Window 12 s 

Streaming Buffer 62 s 

 
Following, we study the impact of different parameter settings, e.g. request period, the 

size of sliding window and aggressiveness factor , on the performance of the whole system 
so as to explore proper settings. From Fig. 4 to Fig. 7, we can observe that when delivery ratio 
is transformed from block-level to application-level, in addition to the proposed scheduler, the 
delivery ratios of all schedulers are significantly decayed. This is because only some of 
received blocks can be used to form decodable frames. Most of them are regarded as 
incomplete as the case in Fig. 1. On the other hand, it is worth noting that since the proposed 
scheduler does control the distribution of received blocks, the gap between block-level and 
application-level is reduced. Therefore, compared with other schedulers, the proposed 
scheduler can provide more useful throughput to upper application. 

We first study the block-level and application-level delivery ratio curves for different 
request period in Fig. 4 (a) and (b), respectively. It can be seen that shorter request period is 
needed for better performance, especially when a smaller sliding window is preferred. This is 
because when the request period is smaller, a block earns more chances of being re-requested 
and can be retried after its request time-out more quickly. Nevertheless, as the request period 
is below 250ms or even smaller, a peer attempts to send its requests frequently before 
time-outs of previous requested blocks and merely incurs additional overhead. Hence the 



overall throughput is decayed. So, we set the request period to 250ms to provide better an 
application-level throughput. 
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Fig. 4 (a)(b): Block-level Delivery Ratio and Application-level Delivery Ratio over different Request Period 

 
As illustrated in Fig. 5, a larger sliding window implies that a block stays in it longer; 

hence a peer has more opportunities of re-requesting it, similar to the condensation of request 
period. However, a large sliding window means longer startup latency and larger watching 
delay. Therefore, we set the window size to 12 seconds and condense the request period 
instead. 
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Fig. 5 (a)(b): Block-level Delivery Ratio and Application-level Delivery Ratio over different Sliding Window 

 

We investigate the impact of different bandwidth allocation aggressiveness factor in 
Fig. 6 by varying the factor under different values in [0,1]. It is interesting to see that, due to 
the variation of source streaming rate, the historical estimator cannot provide good throughput. 
As the aggressiveness factor is in [0.3,1.0], the historical estimator seems to have little effect 
on improving the performance of throughput. However, as the bandwidth supply ratio is small, 
a too aggressive bandwidth allocation strategy can over-estimate and causes peers congested 
more frequently while a smoother bandwidth allocation benefits overall performance then. 
Such a phenomenon can be more apparent as the bandwidth supply ratio goes down; therefore 

we set the aggressiveness factor to 0.3 as a more conservative compromise. 
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Fig. 6 (a)(b): Block-level Delivery Ratio and Application-level Delivery Ratio over different Bandwidth Allocation 

Aggressiveness Factor 

 
Next, we study the effect of different peer upload capacities on the system. As shown in 

Fig. 7, we adjust the peer upload capacity according to the amplification ratio, i.e., the 

outbound bandwidth of each peer varies from its original value to . We can observe 
that although our scheduler provides a slightly lower block-level delivery ratio (within 5%), 
compared with Throughput-Optimized, Rarity-Priority-Optimized, Random, and LRF 
schedulers, the gain of corresponding application-level delivery ratio are 17%, 19%, 25%, and 
27%, and the gain of average PSNR are 1.84dB, 1.79dB, 2.97dB, 3.07dB, respectively. This is 
because our scheduler is to maximize the rate-distortion benefit instead of throughput. On the 
other hand, with the increase of bandwidth amplification ratio, the delivery ratios go up and 
the gaps between the compared approaches get smaller. This is because network resources are 
too plentiful so that all delivery ratios tend to approach to 1. 
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Fig. 7 (a)(b)(c): Block-level Delivery Ratio, Application-level Delivery Ratio and Average PSNR over different 

Bandwidth Amplification Ratio 

 

To represent the impact of variable bit rate, we encode two video sequences which are 
consisted of several test sequences. Both videos have a common average bit rate of 300kbps 
but with different variation of source streaming rate. The first one has some rapid scene 
changes of very high bit rate while the curve of second one is smoother, as depicted in Fig. 8 



and Fig. 9, respectively. 
The PSNR values provided by different methods for the two videos are shown in Fig. 10 

and Fig. 11. It again demonstrates the importance of exploiting content information for the 
control of distribution of fetched blocks. Our method substantially improves the PSNR up to 
1.7 dB on average compared with others. Both the results of the two video sequences show 
that our scheduler can improve the perceptual visual quality while accommodating to source 
streaming rate variation and insufficient network capacity. This indicates that content-aware 
strategies can effectively improve the visual quality under the same limitation of network 
capacity. 
 

 
Fig. 8: Bit rate Distribution of the High Variation Video 

 

 
Fig. 9: Bit rate Distribution of the Medium Variation Video 



 
Fig. 10: PSNR over Time (High Variation Video) 

 

 
Fig. 11: PSNR over Time (Medium Variation Video) 
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