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Figure 1. The graph representation of the DBLP dataset. 
 
 
Methodology: 
We use the OpenMP API [2] to implement the parallel subgraph search. Figure 2 
shows the overview and a simple architecture of our problem. The detail processes of 
searching in social network are described in the following: 
1. Given a query such as “A person who has published two papers”, we can form a 

graph which is constructed by three nodes: one node with the type “author”, and 
other two nodes with the type “paper”. Also, there are two edges in this graph, that 
is, the links between the two paper nodes and the author nodes. 

2. After the query graph constructed, we can search the query graph from the large 
social network about the DBLP data. The corpus (also it is a graph) is constructed 
before the querying performed. We can perform the searching task by several 
search methods for network search, such as Breadth-First-Search or 
Depth-First-Search. For the application, we use the BFS for most of the situations. 
For all the methods of searching in network, we must traverse the graph once and 
collect the information we need at every node. As a result, when the dataset is 
large, the network is also huge due to more nodes added, and the time for 
searching is extremely costly. For the sake of efficiency, we want to combine the 
parallel algorithm into searching while the task of traversing nodes is performed. 

3. We initially use the PageRank [3] values for every subgraph to do the ranking of 
search results. When we found the subgraph corresponded with the graph of query, 
we sum up the PageRank values of all nodes in this subgraph as its score, and 
search for the next. 

4. After all the nodes are traversed, there would be several corresponded subgraphs 
found. We then perform the ranking methods with respect to the scores (from 
PageRank value) of these graphs. Then we can further look up the hash table to 
find the full names of papers or authors for the top k results. 

Also, here we have some notes in this project as we apply the steps above to the 
searching process: 
1. The isomorphism of a subgraph. We might get many search results while there is a 

condition for isomorphism. When a subgraph is simple and well-structured, there 
might be several corresponding subgraph and the searching and ranking process 
would be slower. This is an important characteristic in graph theory and we must 
treat it in a careful way during the search phase. 

2. The PageRank value would be a temporarily the ranking criteria. We might use 
some criterion from the graph theory, such as in-link, out-link, degree, or the link 



score from HITS [4], etc. The goal of this project is to utilize the parallel 
techniques to speed up the time spent on searching a subgraph, thus we might 
apply the different criterion in the future work. 

3. The query types are currently limited to the types of node. However, in a 
heterogeneous social network, the types of edges would be an important role as 
we added to the search process. In this way, query would be more complicated and 
difficult to process when the BFS algorithm applied. Consequently, we current use 
the type of nodes in this project to make the searching process simpler. 

 

Figure 2. The architecture of subgraph searching problem. 
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implement the parallel program. The experimental results are shown in table below. 
The number of threads is the control factor, which are set to increase from 2 to 16. 

# of threads Sequential  Parallel  
Time  Usage  Time  Usage  

2  
 
 
0.83s 

 
 
 
91.0% 

0.40s 178% 

4  0.27s  291%  

8  0.41s  462%  

16  0.24s  457%  

Table 5. The time speedup table of query ”Search for the subgraph has 
the longest shortest path between two given type of node.”. 

 
f. Query 6: Calculate the average number of authors for one paper in different 

conferences or journals 
In this project, we might try some different statistic result for the large social network. 
A simple statistical way is shown here. The goal of query 6 is to find the average 
number of authors for one paper in different conferences or journals. We apply the 
Breadth-First-Search (BFS) again, and try to examine the time efficiency for 
sequential and parallel program. 
 
# of threads Sequential  Parallel  Parallel Nowait 

Time  Usage  Time  Usage  Time Usage 
4   

 
14.48s 

 
 
99.8% 

4.31s  327.1%  1.40s 153.5% 

8  3.85s  475.0%  1.20s 246.6% 

16  4.09s  417.3%  0.61s 167.2% 

Table 6. The time speedup table of query “Calculate the average number of authors 
for one paper in different conferences or journals”. 

 
The result is shown in table 6. From the result, it is easy to see that the power of 
parallel programming reveals of all it. The best result, which appeared when 16 
threads and “nowait” command are applied, tells us that we can improve the original 
program as 2273.77% of efficiency. The parallel programming could be powerful and 
enhance the speedup in a very huge effort if we use it carefully, thus solve the difficult 
and time-consuming problem in an efficient manner. 
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(2) Standard Deviation vs. Component Size 

 
 
(3) Type Distribution vs. Component Size 

 
 
We implement the whole process by either sequential or parallel methods, and we can 
tell that parallel programs indeed boost the performance of connected components 
analysis, as shown below, 

# of threads Sequential  Parallel  
Time  Usage  Time  Usage  

4   
 
7.22s 

 
 
99.5% 

3.00s  228.6%  

8  3.13s  289.7%  

16  2.85s  241.7%  

Table 7. The time speedup table of Connected Component Analysis: 
Find statistical behaviors in each connected component, and overall 

statistics.. 
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Conclusion & Future Work 
In this project, we implement a program with the parallel technique and make a 
deeply look for the subgraph search problem in a efficient way. The contribution of 
this project is two-fold. From the efficient point of view, we combine the OpenMP 
parallel API into the project and implement it with parallel programming technique. 
Moreover, from several experiments, it shows us a very exciting and useful result 
when we make the subgraph search problem in a parallel way. The efficiency is 
substantially improved, thus make the problem more applicable and in a less costly 
way. As the parallel technique is widely used, there would be more solutions for the 
social network mining with the parallel perspective. Another part of contributions is 
that we make the application easier. For the graph mining’s view, we propose the idea 
for efficiently mining the network for some interesting, special, or contradictory 
results, such as three papers which cited each other. The social network for mining 
could even be applied in different datasets like movie or other types of data. As a 
result, more social network problems can be solved efficiently, and more research 
topics in social network would be realized due to the cost of mining is substantially 
reduced. 
 
We might apply different criterion for ranking subgraphs as discussed previously. 
Moreover, the edge’s type might also be considered in the future work. Different data 
structure representations for graphs can also be used to solve the more difficult, 
complicated, and larger graph while the graph is constructed. We believe that with 
these improvements, we could solve more research and applicable problems in 
network mining, and make the mining process that in the research of social network 
much easier and more comfortable. 
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