Efficient Subgraph Mining In

Multi-Relational Networks

Pu-Jen Cheng (& })

Ass

istant Professor

Department of Computer Science and Information Engineering

Introduction & Motivation:
Subgraph searching problem [1] is an interesting research direction in the Web or

many other social environments. However, there are many problems in the searching
of graph. One of the most difficult problems is the cost of computation. When we
apply more conditions in the searching algorithms, the computational time is longer
and more costly due to there is a huge number of links and vertices in a graph. Thus,
we want to apply the OpenMP [2] parallel method to speed up the computation of

subgraph searching.

[Querv

- {greiz]

National Taiwan University

R97922134 TingC

Result 1
Result2 -

Result3

hu Lin (™)

Ranking Scare
=C0.67
Ranking Score
=0.55

Ranking Score
=0.43

g

ptc10)
ggc10

53
‘kate capshaw’

‘amy inving'

bst1

picio,

oaclo ‘emy irving’

)

odpis

N

amy irving’

bst1

/

Figure 1. The graph representation of the DBLP dataset.

Methodology:

We use the OpenMP API [2] to implement the parallel subgraph search. Figure 2
shows the overview and a simple architecture of our problem. The detail processes of
searching in social network are described in the following:

1.

Given a query such as “A person who has published two papers”, we can form a
graph which is constructed by three nodes: one node with the type “author”, and
other two nodes with the type “paper”. Also, there are two edges in this graph, that
is, the links between the two paper nodes and the author nodes.

After the query graph constructed, we can search the query graph from the large
social network about the DBLP data. The corpus (also it is a graph) is constructed
before the querying performed. We can perform the searching task by several
search methods for network search, such as Breadth-First-Search or
Depth-First-Search. For the application, we use the BFS for most of the situations.
For all the methods of searching in network, we must traverse the graph once and
collect the information we need at every node. As a result, when the dataset is
large, the network is also huge due to more nodes added, and the time for
searching is extremely costly. For the sake of efficiency, we want to combine the
parallel algorithm into searching while the task of traversing nodes is performed.
We initially use the PageRank [3] values for every subgraph to do the ranking of
search results. When we found the subgraph corresponded with the graph of query,
we sum up the PageRank values of all nodes in this subgraph as its score, and
search for the next.

After all the nodes are traversed, there would be several corresponded subgraphs
found. We then perform the ranking methods with respect to the scores (from
PageRank value) of these graphs. Then we can further look up the hash table to
find the full names of papers or authors for the top k results.

Also, here we have some notes in this project as we apply the steps above to the
searching process:

1.

The isomorphism of a subgraph. We might get many search results while there is a
condition for isomorphism. When a subgraph is simple and well-structured, there
might be several corresponding subgraph and the searching and ranking process
would be slower. This is an important characteristic in graph theory and we must
treat it in a careful way during the search phase.

The PageRank value would be a temporarily the ranking criteria. We might use
some criterion from the graph theory, such as in-link, out-link, degree, or the link

score from HITS [4], etc. The goal of this project is to utilize the parallel
techniques to speed up the time spent on searching a subgraph, thus we might
apply the different criterion in the future work.

. The query types are currently limited to the types of node. However, in a
heterogeneous social network, the types of edges would be an important role as
we added to the search process. In this way, query would be more complicated and
difficult to process when the BFS algorithm applied. Consequently, we current use
the type of nodes in this project to make the searching process simpler.

Figure 2. The architecture of subgraph searching problem.

Experiments

Dataset:

We adopt the DBLP dataset, wherein there exists an abundant of information about
persons, papers, proceedings, and journals, and these data are modeled into graphs in
which nodes and edges are defined. The node type includes “person”, “paper”,
“proceedings” and “journal”’, whereas the edge type captures possible relationship
existing between nodes and contains “author-of”, “in-proceedings”, “in-journal”, and
“cites”. Detailed description is shown in the table below:

author-of person-paper
in-proceedings paper-proceedings
in-journal paper-journal
cites paper-paper

Each node and edge is assigned an id number for identification. Based on the id
number, some detailed description about the component (either node or edge) is also
given in the dataset. For example, if the component is an “author-of” edge, the
following information shall be provided according to the id number (1190061 in this

example):

1190061 conference ICALP

1190061 ishn 3-540-27580-0

1190061 publisher Springer

1190061 series Lecture Notes in Computer Science

1190061 title Automata, Languages and Programming, 32nd International Colloguiue, ICALP 2005, Lishon, Portugal, July 11-15, 2005, Proceedings

11590061 volwwe 3580
1190061 year 2005

Finally, for each component (node or edge), a corresponding PageRank score shall be
computed and stored for future inference. The network constructed by the DBLP
dataset and the simple querying process can be represented as Figure 1.

Experimental Result:
For experiments of this work, we propose several queries for subgraph search, and

further test the correctness and time speedup for the parallel methods.
a. Query 1: Search a person with two different papers, which are co-authored
with different two people.

First of all, we try a query of which complexity is O(|G(Vperson)|*3). For this query,

we need to compute who proposed more than two papers at first, and we marked this
person as he could be possible subgraph. Second, we search all nodes of person type
in corpse to find who the co-author with the marked person was. We need to check the
permutation of every marked people with his “two” paper, too. We apply openMP API
to parallel this query, and there are two different parallel directives in this experiment,
one is marking critical section in result record variables, the other is using reduction
to sum up total results.

of threads | Sequential Critical Reduction

Time Usage Time Usage Time Usage
4 11.4s 191.0% | 11.17s 207.5%
8 14.81s 96.7% 12.13s 321.5% | 11.57s 320.8%
16 11.04s 361.7% | 10.75s 344.6%

Table 1. The time speedup table of query” Search a person with two different papers,
which are co-authored with different two people”.
There is about 20% speedup that parallel program runs faster than sequential program.
However, the increase of number of threads only increases the usage of CPU but no
apparent improvement on time. The reason is we use a lot of privacy memory, and
there are lots of inner loop of the parallel loop, so its cost of content switch
overwhelms parallel speedup. In the same time, we could not see obvious
improvement on critical or reduction.

b. Query 2: Search a paper co-worked by three people

9

We further try a simple query that described as “a paper is co-worked by three people”.
For this query, the Breadth-First-Search (BFS) algorithm is again applied in the search
process. First try to find a person with a paper, and find another two authors own such
paper. Due to the links of the graph are all directed, the time complexity of sequential

program is O(n®). We then apply the OpenMP API to implement the parallel program.

The experimental results are shown in table 2 below. The number of threads is the

control factor, which are set to increase from 4 to 16.

of threads Sequential Parallel

Time Usage Time Usage
4 4.60s 297.8%
8 14.31s 99.9% | 3175 5334%
16 3.68s 456.7%

Table 2. The time speedup table of query ”Search a paper co-worked
by three people”.

From the table, we could easily found that the parallel version might enhance the
speedup up to 351% when 8 threads applied. However, the result is not much better
when 16 threads applied (than 8 threads). We might consider it from the reason that
when 16 threads are set and distributed to 8 CPU core to finish the task, the computer
might switch the processes for finishing the tasks. Moreover, the usage rate of CPU
when 16 threads assigned does not exceed the usage rate as 8 threads assigned, too.
As a result, it is much better that to assign n threads when we have only n CPU cores
in small number time spent of tasks.

c. Query 3: Search a person with two papers, and one of the papers is
co-worked with other two people. Furthermore, the paper cites two other
papers and one of these two cited papers cite another.

We then try another query for a more complicated subgraph. In this subgraph, there
are seven nodes with two different types as the query 3 described. We use the
Breadth-First-Search (BFS) algorithm again, and try to search the subgraph if there is
such graph exists. For the rank result we use the summation of all of the PageRank
value from the nodes again, and try to find out the time efficiency before and after
parallel technique applied. Table 3 shows the result of query 3.

of threads Sequential Parallel

Time Usage Time Usage
4 4.31s 327.1%
8 14.48s 99.8% | 385 | 475.0%
16 4.09s 417.3%

Table 3. The time speedup table of query “Search a person with two papers, and
one of the papers is co-worked with other two people. Furthermore, the paper
cites two other papers and one of these two cited papers cite another.”.

From the result, we can easily find that the parallel version does a very large
improvement as the speedup can be reach to about 276%. We again see the result that
using 16 threads is slightly worse than using 8 threads. In addition, from query 1 to
query 3 we found that it is not always slow when the query size is much larger and is
more complicate. The isomorphism of graph is introduced for explaining the result.
From a simple query like query 1, we might get a huge amount of subgraphs from the
large network and the permutation must be considered when the candidate subgraph
added. Consequently, it got more time in query 1 but not so much cost for searching
the query 3.

d. Query 4: Search for a given length x as the shortest path between two given

paper@ s n aXo ww —> {:) paper

Repeat with [paper, proceedings]
until length equal to X.

» Input (Type-H, Type-T, X, [Pattern])

o Type-H: Type of head node

o Type-R: Type of tail node

o X: length of the Path(shortest path)

o [Pattern]: a string of path path’s node type, repeat if necessary).

For this query, the Depth-First-Search (DFS) algorithm is applied in the search
process. First try to find all nodes with a Type-H, then DFS algorithm is applied to
each of them to find all nodes reachable, the parallel process start from here. In

addition, we do some check for back edges so the path form root is shortest, and the
types of nodes in the path should follow the input pattern , in the end the, the type of
tail node must be verified. Due to the links of the graph are all directed, the time
complexity of sequential program is O(n*). We then apply the openmp API to
implement the parallel program. The experimental results are shown in table below.
The number of threads is the control factor, which are set to increase from 2 to 16.

of threads Sequential Parallel
Time Usage Time Usage
2 0.45s 184%
4 0.20s 296%
0.85s 93.0%
8 ’ 0365 | 432%
16 0.29s 429%

Table 4. The time speedup table of query ”Search for a given length x
as the shortest path between two given”.

e. Query 5: Search for the subgraph has the longest shortest path between two
given type of node.

paperO s s Xmmw —2 @ paper

Repeat with [paper, proceedings]

» Input (Type-H, Type-T, [Pattern])

Type-H: Type of head node

Type-R: Type of tail node

[Pattern]: a string of path path’s node type, repeat if necessary).

o

o

o

For this query, the Depth-First-Search (DFS) algorithm is applied again in the
search process. First try to find all nodes with a Type-H, then DFS algorithm is
applied to each node of them to find all nodes reachable, the parallel process start
from here. In addition, we do some check for no back edges so the path for root is
shortest, and the types of nodes in the path should follow the input pattern, in the end
the, the type of tail node must be verified. Openmp “critical” is used when update the
longest length found latest. Due to the links of the graph are all directed, the time
complexity of sequential program is O(n*). We then apply the openmp API to

implement the parallel program. The experimental results are shown in table below.
The number of threads is the control factor, which are set to increase from 2 to 16.

of threads Sequential Parallel
Time Usage Time Usage
2 0.40s 178%
4 0.27s 291%
0.83s 91.0%
8 0.41s 462%
16 0.24s 457%

Table 5. The time speedup table of query ”Search for the subgraph has

the longest shortest path between two given type of node.”.

f. Query 6: Calculate the average number of authors for one paper in different
conferences or journals
In this project, we might try some different statistic result for the large social network.
A simple statistical way is shown here. The goal of query 6 is to find the average
number of authors for one paper in different conferences or journals. We apply the

Breadth-First-Search (BFS) again, and try to examine the time efficiency for

sequential and parallel program.

of threads | Sequential Parallel Parallel Nowait
Time Usage Time Usage Time Usage

4 4.31s 327.1% 1.40s 153.5%

16 4.09s 417.3% 0.61s 167.2%

Table 6. The time speedup table of query “Calculate the average number of authors
for one paper in different conferences or journals”.

The result is shown in table 6. From the result, it is easy to see that the power of
parallel programming reveals of all it. The best result, which appeared when 16
threads and “nowait” command are applied, tells us that we can improve the original

program as 2273.77% of efficiency. The parallel programming could be powerful and
enhance the speedup in a very huge effort if we use it carefully, thus solve the difficult
and time-consuming problem in an efficient manner.

g. Query 7: Connected Component Analysis: Find statistical behaviors in each
connected component and overall graph statistics.

C O/Q O

To give an overview of the entire DBLP dataset, we conduct experiments which aim
to uncover all existing connected components. Experinetal results demonstrate that
there are 13119 connected components, wherein the largest component contains 1163
nodes. This reveals that most of components consist of a small set of nodes; in other
words, there are numerous research topics existing in the field of acedamics.
Furthermore, we want to realize if there is some specific relation between the size of a
component (e.g., how many nodes there are in the component) and the mean
PageRank score in that component. Interestingly, the larger the size of a component,
the more stable its mean PageRank score is. Similarly, we calculate standard deviation
value in each component to realize the degree of agreements among a research group.
Results show that standard deviation of some groups is pretty low, while some others
have high deviation value. Generally speaking, however, the larger the size of a
component, the more consistent their indivisual PageRank score is. Finally, we can
see that the most common types of nodes in a component is either “paper” or “person”
as expected, whereas there is nearly zero percent of “PhDthesis” in all size of
components. We can see all analysis below:

(1) Mean PageRank score vs. Component Size

0.2

015 1 .
or Aﬂ AN

o VAN Y ™

1 3 5 7 9 1113151719 21 23 2527 29 31 33 35 37 39 41 43 45 47 49 51 53 55

(2) Standard Deviation vs. Component Size

- A \
N A | | \
AN A

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

(3) Type Distribution vs. Component Size

1

0.9

0.8 N\ 1

0:7 |) / r

0.6 A | = paper

paper

journal

05 4 proceeding
s
book

0.4 M

A — WWW
0.3 F |] V | 4 v ‘
0.2 | = PhDthesis
0.1 A
0 e
1 3 5 7 9 1113151719 2123 2527 29 31 33 35 37 39 41 43 45 47 49 51 53

We implement the whole process by either sequential or parallel methods, and we can
tell that parallel programs indeed boost the performance of connected components
analysis, as shown below,

of threads Sequential Parallel

Time Usage Time Usage
4 3.00s 228.6%
16 2.85s 241.7%

Table 7. The time speedup table of Connected Component Analysis:
Find statistical behaviors in each connected component, and overall
statistics..

Conclusion & Future Work

In this project, we implement a program with the parallel technique and make a
deeply look for the subgraph search problem in a efficient way. The contribution of
this project is two-fold. From the efficient point of view, we combine the OpenMP
parallel API into the project and implement it with parallel programming technique.
Moreover, from several experiments, it shows us a very exciting and useful result
when we make the subgraph search problem in a parallel way. The efficiency is
substantially improved, thus make the problem more applicable and in a less costly
way. As the parallel technique is widely used, there would be more solutions for the
social network mining with the parallel perspective. Another part of contributions is
that we make the application easier. For the graph mining’s view, we propose the idea
for efficiently mining the network for some interesting, special, or contradictory
results, such as three papers which cited each other. The social network for mining
could even be applied in different datasets like movie or other types of data. As a
result, more social network problems can be solved efficiently, and more research
topics in social network would be realized due to the cost of mining is substantially
reduced.

We might apply different criterion for ranking subgraphs as discussed previously.
Moreover, the edge’s type might also be considered in the future work. Different data
structure representations for graphs can also be used to solve the more difficult,
complicated, and larger graph while the graph is constructed. We believe that with
these improvements, we could solve more research and applicable problems in
network mining, and make the mining process that in the research of social network
much easier and more comfortable.

Reference

1. L. Zou, L. Chen, and Y.Lu. “Top-k subgraph matching query in a large graph”. In
Proceedings of the ACM Conference on Information and Knowledge Management
(CIKM), pages. 139-146, 2007.

2. The OpenMP API Specification for Parallel Programming. http://openmp.org/wp/
L. Page, S. Brin, R. Motwani, and T. Winograd. “The PageRank Citation Ranking:
Bringing Order to the Web”. In Technical report, Stanford University, 1998.

4. S. Chakrabarti , B. Dom, P. Raghavan , S. Rajagopalan, D. Gibson , and J.
Kleinberg. “Automatic resource compilation by analyzing hyperlink structure and
associated text”. In Proceedings of the seventh international conference on World
Wide Web 7, p.65-74, 1998.

