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1. Introduction 

Hydrology is a subject taught in various engineering disciplines such as hydraulic 

and hydrological engineering, civil engineering, agricultural engineering, and 

environmental engineering. It is also a topic studied in geoscience-related disciplines 

including geography, geology, soil and water conservation, forestry, etc. The study of 

hydrology is thus necessary not only for engineering practice but also for scientific 

advancement. Hydrological processes occur in the atmosphere, land surface and 

subsurface of the earth. It involves numerous sub-processes and parameters which 

exhibit various degrees of spatial and temporal variability. Many hydrological 

processes are not fully understood, and simplified physical and conceptual models are 

developed for purpose of practical applications. In addition, observation of 

hydrological variables can only be conducted in limited spatial and temporal points. 

The inability to correctly model the hydrological processes and collect sufficient data 

to characterize the spatial and temporal variabilities of hydrological processes results 

in significant uncertainties in hydrological modeling and forecasting.  

In recent years, frequent occurrences of natural hazards (e.g., droughts, flood 

inundation, flash floods, and storm-triggered debris flows) and increasing concern 

about the hydrological consequences of climate changes have led the research 

communities and administrative agencies to become aware of or take into account the 

uncertainties involved in hydrological modeling and forecasting in their 

decision-making process. 

On the one hand, hydrology, as a branch of geoscience, is heavily dependent on 

available data for making inference and forecasting. On the other hand, like many 

other fields in geoscience, it suffers from the difficulty of quantifying uncertainties 

involved in modeling and forecasting. Recently, there have seen many new models 

like artificial neural network (ANN) and support vector machine (SVM) introduced 

for hydrological modeling and forecasting, partly due to the fast advancement in 

artificial intelligence, machine learning, and data mining. Even though theses models 

have gain interests and attentions of many researchers, their practical implementation 

in real world problems are few. The main obstacles for practical application of these 

models are two-fold – (1) their inability to quantify the modeling and forecasting 
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uncertainties, (2) the nature of data-dependent model structure embedded in these 

data-driven models.  

In light of the importance of uncertainties in decision making, techniques of 

stochastic simulation will be applied to quantitatively assess the uncertainties 

involved in hydrological modeling and forecasting.  

2. Objective 

The specific objective of this study is: 

Establishing sample-size-dependent acceptance regions of L-moments for 

goodness-of-fit (GOF) test of three-parameter distributions commonly used in 

hydrological frequency analysis.  

3. Significance 

In a previous study (Liou, et al., 2008) we have established 95% acceptance 

regions for sample L-moments of the normal and Gumbel distributions using 

stochastic simulation. The two distributions are two-parameter distributions with a 

location and a scale parameter, and their 3
rd

 and 4
th

 L-moments occupy a single unique 

point on the skewness and kurtosis L-moment-ratio diagram (LMRD). In contrast, a 

three-parameter distribution (for examples, the Pearson-Type-III (PT3) distribution 

and the General Extreme Value (GEV) distribution) with location, scale and shape 

parameters plots as a curve on the LMRD. Practically speaking, L-moments 

acceptance regions of three-parameter distributions are to be sought after since the 

PT3, log-PT3 and GEV distributions have been demonstrated most useful in 

hydrological frequency analysis. Although similar approach appears applicable for 

establishing L-moments acceptance regions of three-parameter distributions, it is 

actually much more complicated since the intensity of computation is several order 

higher and, most importantly, the acceptance regions not only vary with sample size 

but also the shape parameter. Unlike the normal and Gumbel distributions for which 

unique elliptical acceptance regions can be established, PT3 and GEV distributions 

have infinite number of acceptance regions with respect to various values of the shape 

parameter. Thus, LMRD-based goodness-of-fit test of the PT3 and GEV distributions 

must also consider the uncertainty of shape parameter estimation. In addition, the PT3 

and GEV distributions are most commonly used for frequency analysis of both 

rainfall and flood. Therefore, establishing sample-size-dependent acceptance 

regions for three-parameter distributions such as the PT3 and GEV distributions, 

with consideration of the uncertainty in parameter estimation of shape factor, 

will provide a complete set of tools for LMRD-based GOF test of probability 

distributions commonly used in hydrological frequency analysis. 

4. State of Knowledge 
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4.1 L-moment-ratio diagram 

 In recent years there have been many applications of L-moments for frequency 

analysis and the skewness and kurtosis L-moment-ratio diagram (LMRD) was 

suggested as a useful tool for discrimination between candidate distributions (Hosking, 

1990; Hosking and Wallis, 1993, Vogel and Fennesset, 1993, Hosking and Wallis, 

1997). The L-moments uniquely define the distribution if the mean of the distribution 

exists, and the L-skewness and L-kurtosis are much less biased than the ordinary 

skewness and kurtosis (Hosking and Wallis, 1997). As demonstrated in Figure 1, a 

two-parameter distribution with a location and a scale parameter plots as a single 

point on the LMRD, whereas a three-parameter distribution with location, scale and 

shape parameters plots as a curve on the LMRD, and distributions with more than one 

shape parameter generally are associated with regions on the diagram (Hosking and 

Wallis, 1997). However, theoretical points or curves of various probability 

distributions on the LMRD cannot accommodate for uncertainties induced by 

parameter estimation using random samples. Therefore, the effect of record length on 

estimates of parameters should be considered in determining the best-fit distribution 

for regional frequency analysis.  
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Figure 1. L-moment-ratio diagram of various distributions. 

4.2 Bivariate distribution of sample L-skewness and L-kurtosis 

L-moments are an alternative system of describing the shapes of probability 

distributions. For a random variable X with quantile function x(u), Hosking and Wallis 

(1997) defined the L-moments rλ( , ),2,1 L=r  as  
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The L-moments can also be expressed in terms of the probability weighted 

moments defined by Greenwood et al. (1979), and the first four L-moments are given 

by 

01 βλ =  (4) 

012 2 ββλ −=  (5) 

0123 66 βββλ +−=  (6) 

01234 123020 ββββλ −+−=  (7) 

where rβ , L,2,1,0=r , are probability weighted moments defined by 

∫=
1

0
)( duuux

r

rβ  (8) 

In terms of linear combination of order statistics, the L-moments can also be 

expressed by 

( )1:11 XE=λ  (9) 
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where nkX : is the k-th order statistic from a random sample of size n.  

Similar to the ordinary moment ratios, the L-moment ratios are defined by 

2λ

λ
τ r

r = , L,4,3=r  (13) 

Theoretical relationships between L-skewness ( 3τ ) and L-kurtosis ( 4τ ), i.e. the 

L-moment ratio diagram, of several probability distributions have been given by 

Hosking (1990) and can be used to distinguish different probability distributions (see 

Fig. 3).  

Given a random sample{ }nxxx ,,, 21 L , an unbiased estimator of the probability 

weighted moment rβ is given by 
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The sample L-moments ( rl ) and sample L-moment ratios ( rt ) can then be calculated 

by 



 5 

01 b=l  (15) 

012 2 bb −=l  (16) 

0123 66 bbb +−=l  (17) 

01234 123020 bbbb −+−=l  (18) 

2ll rrt =  (19) 

The sample L-moments rl is an unbiased estimator of rλ ; however, the estimator rt is 

not an unbiased estimator of rτ (Hosking and Wallis, 1997), even though for most 

distributions the biases are negligible for sample sizes of 20 or more. Also, the sample 

L-skewness (t3) and L-kurtosis (t4) are found to have a joint distribution close to 

bivariate normal. However, the exact distributions of the sample L-moment ratios are 

difficult to be derived. 

In addition to the above mentioned sample L-moments and sample L-moment 

ratios, Hosking and Wallis (1997) also defined the plotting-position estimators 

of rλ and rτ as 
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where njp : is a plotting-position estimator and was chosen to be 

njp nj /)35.0(: −= . (22) 

Hosking and Wallis (1997) indicated that rλ
~

is not an unbiased estimator of rλ , but its 

bias tends to zero in large samples. Hereafter rt  and rτ~  will be respectively referred 

to as the probability-weighted-moment estimator and the plotting-position estimator 

of the L-moment ratio rτ . It is generally advised to use the probability-weighted- 

moment estimators since they are inferior to the plotting-position estimators only for 

some instances of estimation of extreme quantiles in regional frequency analysis and 

have generally lower bias as estimators of the L-moment ratios (Hosking and Wallis, 

1997).  

It should also be addressed that the plotting-position L-moment estimators are 

non-invariant estimators (Hosking and Wallis, 1997), and thus their statistical 

properties vary with changes in the location and scale parameters of the population 

from which random samples are drawn. In order to derive statistical properties of the 

plotting-position L-moment estimators which are generally applicable with respect to 

location and scale parameters, it is necessary to have the random samples 

preprocessed (sample mean subtraction followed by division by sample standard 

deviation) for normalization (zero mean and unit standard deviation), and use the 
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standardized data for calculation of the plotting-position L-moment estimates using 

Eqs. (20) and (21). 

Through stochastic simulation of the normal and Gumbel random variables, Liou 

et al. (2008) demonstrated that, for both distribution types, the joint distribution of 

sample L-skewness and L-kurtosis seem to resemble a bivariate normal distribution 

for a larger sample size (n = 100).  

4.3 Sample-size dependent acceptance regions of LMRD 

Liou et al. (2008) established sample-size-dependent 95% acceptance regions of 

sample L-skewness and L-kurtosis for both normal and Gumbel distributions (Figure 

2). The acceptance regions are determined by a set of equiprobable ellipses. The 

equiprobable ellipses are in turn characterized by the mean vector and covariance 

matrix of sample L-skewness and L-kurtosis which can be estimated with very high 

accuracy using a set of sample-size-dependent empirical relationships.  

   

    (Normal distribution)              (Gumbel distribution) 

Figure 2. 95% acceptance regions of L-moments-based GOF test for the normal and 

Gumbel distributions. Acceptance ellipses correspond to various sample sizes (n = 20, 

30, 40, 50, 60, 75, 100, 150, 250, 500, and 1,000). (Liou et al., 2008) 

5. Approach 

5.1 Establishing the sample-size-dependent 95% acceptance regions of sample 

L-moments of the PT3 and GEV distributions   

5.1.1 Stochastic simulation of the PT3 and GEV distributions 

From the view point of random number generation, the frequency factor can be 

considered as a random variable K, and KT is a value of K with exceedence probability 

1/T. For example, frequency factor of the PT3 distribution can be approximated by 

(Kite, 1988) 
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where z is the standard normal deviate and Xγ  is the coefficient of skewness of X. 

Given Xµ , Xσ and Xγ , if we can generate a set of random numbers of K, say 

nkkk ,,, 21 L , then a random sample of X, say nxxx ,,, 21 L , can be obtained by 

XiXi kx σµ +=  (24) 

Note that each ki, ,,2,1 ni L= corresponds to its own exceedence probability 1/Ti and, 

given the coefficient of skewness, the frequency factor K is only dependent on the 

standard normal deviate z. Thus, simulation of the PT3 distribution can be achieved 

by transferring random samples of the standard normal deviate to random samples of 

the PT3 distribution. Stochastic simulation of GEV distribution can be achieved in a 

similar manner.  

For either of the PT3 and GEV distribution, a total of 100,000 random samples 

will be generated with respect to the specified sample size =n 20, 30, 40, 50, 60, 75, 

100, 150, 250, 500, and 1,000. For each of the 100,000 samples, sample L-skewness 

and L-kurtosis will be calculated using the probability-weighted-moment estimator 

and the plotting-position estimator.  

5.1.2 Evaluating the bivariate normality assumption for sample L-skewness and 

L-kurtosis using the Mardia test 

The following Mardia test statistic pM ,2 has an asymptotic standard normal 

distribution 
( )( ) ( )[ ]

( ) Npp

NNppb
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p
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 . 
(25) 

where N is the number of random samples. At level of significance α, the null 

hypothesis of multivariate normality is rejected if  

21,2 || α−> zM p . (26) 

where 2/1 α−z  is the 100(1-α/2)% quantile of the standard normal distribution. Hence, 

the null hypothesis is rejected if the absolute value of the Mardia statistic pM ,2 exceeds 

1.96. 

5.1.3 Establishing acceptance regions for GOF tests 

Using this bivariate normality property, the )%1(100 α− acceptance region of a 

GOF test based on sample L-skewness and L-kurtosis can be determined by the 

equiprobable density contour of the bivariate normal distribution with its 

encompassing area equivalent to α−1 . The well-known Hotelling’s T
2
 statistic 
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Where X1 and X2 are respectively L-skewness and L-kurtosis, 2

1s  and 2

2s  represent 

the unbiased sample variances of L-skewness and L-kurtosis, and r is the correlation 

coefficient of sample L-skewness and L-kurtosis. The Hotelling’s T
2
 is distributed as a 

multiple of an F-distribution, i.e., 

)2,2(

2
2

)2(

)1(2
~ −

−

−
NF

NN

N
T . (28) 

where N is the size of a random sample of the bivariate vector X. At N = 100,000, we 

have  

2

,22,22,2
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Therefore, the distribution of the Hotelling’s T
2
 can be well approximated by the 

chi-square distribution with degree of freedom 2. Thus, if the sample L-moments pair 

of a random sample of size n falls outside of the corresponding ellipse, i.e. 

( ) ( )nn

T

n xXSxXT −−= −12 2

,2 αχ>
 

(30) 

the null hypothesis that the random sample is originated from a PT3 or GEV 

distribution is rejected. 

A significant difference between the L-moment-ratios of the normal (or Gumbel) 

and PT3 (or GEV) distributions is that the former occupies a unique point on LMRD 

whereas the latter plots as a curve. Thus, acceptance regions of the PT3 and GEV 

distributions cannot be determined by a single set of sample-size-dependent 

equiprobable ellipses. Instead, many sets of sample-size-dependent equiprobable 

ellipses with respect to various values of shape factor will be established. The 95% 

acceptance bands as illustrated in Figure 3 will be constructed by considering the 

conditional distribution of the sample L-kurtosis given L-skewness.  
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Figure 3. Illustration of 95% acceptance band using conditional density. 
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