
Analysis of Elliptic Curve Method & Block
Wiedemann Algorithm: A Case Study of Big
Integer Factorization on Multi-cores Platforms

PAS lab, CSIE, NTU

I. MOTIVATION

RSA is the most popular algorithm for public-key cryptography. RSA’s security relies on the difficulty of big integer
factorization on modern computers. In the past twenty years, there are lots of mechanisms to solve this problem. Most of
them consume great computing power and need to be implemented on parallel computers.

Several years ago, the general trend in processor development has been shifted from high clockrate single processor to
multi-cores. Many manufacturers joined the contest to develope multi-cores processor. Most of them design homogeneous
multi-cores processor, i.e. all of the cores are the same. Examples are Intel core i7 and AMD PhenomII, etc. But there also
exists some heterogenous multi-cores processors, e.g. STI’s Cell processor.

Cell processor was developed by Sony, Toshiba and IBM, an alliance known as "STI" in 2005. One Cell processor is
composed of nine heterogenuous cores. Each core can execute single instruction multiple data (SIMD) instruction indepen-
dently. With cluster computers composed of Cell processors, three layer parallelism , including SIMD layer, heterogeneous
multi-cores layer, and MPI layer, exist.

We hope to exploit Cell’s three layer parallelisms to help the big integer factorization computation. And it can also be a
case study of big integer factorization’s performance on multi-cores platforms.

II. GENERAL NUMBER FIELD SIEVE

Most encryption/decryption algorithms make use of one-way functions, which can be thought of as mappings that are
difficult to invert. In RSA, the one-way function is multiplication of large prime integers, where "large" usually means
over 1024 bits. The key is that while multiplication of such integers can be done nearly instantly, the inversion function of
factoring back into primes is virtually impossible[1].

RSA’s one way function’s power depends on modern computers’ inability to factorize big integers. In the past 20 years,
many mathematicians developed lots of methods to solve this problem, like elliptic curve method invented by H. W. Lenstra
in 1985. ECM is now the method of choice to find factors in the range 1010 to 1060 of general numbers. But it’s not applicable
to numbers with hundreds of digits. Another method, called number field sieve (NFS), is the most efficient algorithm known
for factoring integers larger than 100 digits. Kazumaro Aoki, Jens Franke, Thorsten Kleinjung, Arjen K. Lenstra, and Dag
Arne Osvik reached a new factoring milestone by completing the first special number field sieve factorization of a number
having more than 1024 bits, namely the Mersenne number 21039 − 1 in 2007[2] [3].

General number field sieve composes of several steps, including
1) Select a polynomial
2) Build the factor bases
3) Sieve
4) Process relations
5) Find dependences
6) Compute the final factorization

There are thress steps related to performance. They are polynomial selection, sieving, and finding dependences. The
polynomial selection is related to the number field generation. A good polynomial will eliminate the sieving procedure and
increase the possibility to find non-trivial solutions. Sieving step is the most time-consumed step. But it can be parallelized
via distributing differnent sieving intervals on different nodes. Step to find dependences is a matrix step. This step’s objective
is to find some instances of the matrix’s kernel space so that we can use those instances to generate solutions. (It is not
guaranteed that the solution is non-trivial so that we often need to find many instances rather than just one)

Take the number RSA100 for instance, the ratio of each steps is as the following Table I. (Use GGNFS version 0.77 with
single core of Intel Q6600 processor)



TABLE I
GGNFS COMPUTATION RATIO ON RSA100

Time consumes in hours Ratio
polynomial selection 0.33 7.0%

make factor bases 0.001 0.0%
Sieve 4.11 86.7%

Process relations 0.08 1.7%
Find dependences 0.14 3.0%

Compute the final factorization 0.08 1.7%

III. ELLIPTIC CURVE METHOD

Elliptive Curve Method (abbreviated as ECM) was invented by H. W. Lenstra in 1985. During the past twenty years, there
are lots of modifications in order to improve the algorithm or implement it efficiently. Until now, the largest factor found
using ECM so far was in 2006. And the number is 67 digits in length[4]. Even though ECM can’t factorize large number
more 200 bits efficiently, it can be a sub-step of General Nubmer Field Sieve’s second step–the sieving step so that it’s still
worth to improve ECM’s performance.

IV. BLOCK WIEDEMANN ALGORITHM

Wiedemann Algorithm is invented by D. Wiedemann in 1986. Don Coppersmith modified it so that it can exploit computer
architecture’s characteristics and called Block Wiedemann Algorithm. Block Wiedemann algorithm is used to find kernel
space of a squared sparse matrix over Gallois field. For General Number Field Sieving’s usage, the Gallois field is GF (2).

In addition to Block Wiedemann Algorithm, there is another well-known algorithm called Block Lanczos Algorithm. Block
Lanczos Algorithm is built in GGNFS, a GPL implentation of the General Number Field Sieve.[5] But since the input for
Block Lanczos Algorithm must be a symmetric matrix, it costs inneglect computing time during the conversion of original
matrix while the dimension of matrix is large. In this thesis, I choose Block Wiedemann Algorithm to be implemented.
Block Wiedemann Algorithm is as the following Algorithm 1

Input: A N ×N matrix over GF(2) and the shift parameter ∆, a non-negative integer
Step 1. Pick up random matrices X,Y . Let Z = AY ;
Step 2. Let δl = dN/me and δr = dN/ne. Compute Hi = XAiZ, i = 0, ..., δl + δr + ∆− 1;
Then, solutions w such that Aw = 0 are constructed from generating vector polynomials for that sequence;
Step 3. Compute a generating vector polynomial g(λ) = g0 + g1λ+ ...+ gdλ

d ∈ GF(2)n[λ] of degree at most δr for
the sequence

{
XAiZ

}
i

i.e. such that: XAiZg0 +XAi+1Zg1 + ...+XAi+dZgd = 0for 0 ≤ i ≤ δl + ∆− 1;
Step 4. Let gl be the first non-zero vector coefficient of g(λ). Compute ŵ = Y gl +AY gl+1 + ...+Ad−1Y gd;
Step 5. Compute the first integer ι such that Aιŵ = 0;
Output: If ι ≥ 1, then w = Aι−1ŵ else w = 0

Algorithm 1: Block Wiedemann Algorithm[6]

V. STI CELL BROADBAND ENGINE

STI’s Cell processor is constructed from one power processing element (PPE) and eight synergistic processing elements
(SPE) with a high-bandwidth element interconnection bus (EIB). All of nine cores work at 3.2GHz clockrate.

EIB is a ring-based topology, composed of four rings as shown in Figure 1. EIB is not only used for connecting PPE and
SPE, but also connecting memory and IO controllers. Each ring’s bandwidth is 16 bytes per cycle, and it supports multiple
simultaneous transfers per ring. The peak bandwidth of EIB is 96 bytes/cycle.

Each SPE is composed of a synergistic processing unit (SPU) and a memory flow controller (MFC) (See Figure ??). SPU,
acting like a RISC processor, is used for general computation. Each SPU has SIMD unit and 256KB local storage without
cache design. On SPE, data must be moved to the local storage via direct memory access (DMA) before computation. DMA
ability is not provided by SPU, but the MFC. Each SPE has a DMA engine so that it can access main memory or other
SPEs’ local storage during its computation. With DMA’s help, programmers can easily overlap between computation and
communication on Cell processor.

In 2008, IBM introduces a variant of Cell processors called PowerXCell8i. The main feature of PowerXCell8i is the
improvement of double-precision floating-point performance on the SPEs[8]. Compared with previous Cell processor,
PowerXCell8i supports fully-pipelined double-precision floating-point operations. The double precision peak throughput
of a PowerXCell8i processor is 102 GFLOPS using 8 SPEs. (14 GFLOPS with previous Cell processor) IBM’s Blade Server
QS22 has PowerXCell8i inside.



Fig. 1. Cell Element Interconnect Bus (EIB)[7]

VI. PROJECT OBJECTIVE

This project provides an analysis of Block Wiedemann Algorithm’s and Elliptic Curve Method’s performance on the STI
Cell Broadband Engine processor.

Block Wiedemann Algorithm is used for solving kernel space of a squared matrix. Find kernle space of a large matrix is
an essential step of General Number Field Sieve, a popular algorithm to do big integer factorization.

Elliptic Curve Method is a factorization method. As now, the largest prime factor found using the ECM had 67 digits.
Even though it is not enough to attack RSA algorithm, it can be a candidate to help General Number Field Sieve do the
sieve step.

With above algorithms’ performance result, we can understand STI Cell Broadband Engine processor’s capability on big
integer factorization.

REFERENCES

[1] M. E. Briggs, “An introduction to the general number field sieve,” Master’s thesis, Virginia Polytechnic Institute and State University, 1998.
[2] K. Aoki, J. Franke, T. Kleinjung, A. Lenstra, and D. Osvik, “A kilobit special number field sieve factorization,” in Advances in Cryptology-ASIACRYPT

2007, Springer.
[3] D. J. Bernstein, T.-R. Chen, C.-M. Cheng, T. Lange, and B.-Y. Yang, “Ecm on graphics cards.” Cryptology ePrint Archive, Report 2008/480, 2008.

http://eprint.iacr.org/.
[4] “50 largest factors found by ecm.” http://www.loria.fr/~zimmerma/records/top50.html/.
[5] “Ggnfs.” http://www.math.ttu.edu/~cmonico/software/ggnfs/.
[6] G. Villard, “A study of coppersmith’s block wiedemann algorithm using matrix polynomials,” Tech. Rep. Research Report 975, LMC-IMAG, 1997.
[7] M. Kistler, M. Perrone, and F. Petrini, “Cell multiprocessor communication network: Built for speed,” Micro, IEEE, vol. 26, pp. 10–23, May-June

2006.
[8] “Powerxcell 8i processor product brief,” 2008. http://www-03.ibm.com/technology/resources/technology_cell_pdf_PowerXCell_PB_7May2008_pub.

pdf.


