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The classification problem in machine learning aims at designing a computa-

tional system that learns from some given training examples in order to separate

input instances to pre-defined categories. The problem fits the needs of a variety of

applications, such as classifying emails as spam and non-spam ones automatically.

Traditionally, the regular classification setup intends to minimize the number of fu-

ture mis-prediction errors. Nevertheless, in some applications, it is needed to treat

different types of mis-prediction errors differently. For instance, in terms of public

health, if there is some infectious diseases like SARS (Severe Acute Respiratory

Syndrome), the cost of mis-predicting an infected patient as a healthy one may be

higher than the other way around. In an animal recognition system, the silliness of

mis-predicting a person as a fish may be higher than the silliness of mis-predicting

her/him as a monkey. Such a need can be formalized as the cost-sensitive classifica-

tion setup, which is drawing much research attention throughout the years because

of its many applications, including targeted marketing, fraud detection, medical de-

cision, and web analysis (Abe, Zadrozny and Langford 2004). As shown in Table 1,

there is a gap between the theoretical guarantee and the empirical performance of

most of the existing cost-sensitive classification algorithms. The major topic of this

research project is to fill the gap.

Our past research results (Lin 2008) were targeted towards the ordinal ranking

setup. Instead of asking the computational system to separate input instances to
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theoretical
guarantee

none/weak strong

empirical
performance
bad/unclear not useful some algorithms

(e.g. Beygelzimer, Langford
and Ravikumar 2007)

okay/good many algorithms
(e.g. Margineantu 2001)

only a few algorithms
(e.g. Abe, Zadrozny and Lang-
ford 2004)

Table 1: current status of research on designing cost-sensitive classification algo-
rithms

categories, ordinal ranking asks the computational system to distinguish the ranks

of input instances. It is an important setup in machine learning for modeling our

preferences. For instance, we rank hotels by stars to represent their quality; we give

feed-backs to products on Amazon using a scale from one to five; we say that an

infant is younger than a child, who is younger than a teenager, who is younger than

an adult, without referring to the actual age. Ordinal ranking enjoys a wide range

of applications from social science to behavioral science to information retrieval,

and hence attracts lots of research attention in recent years.

Note that we can view ordinal ranking as a special case of cost-sensitive classifi-

cation. In particular, because there is a natural order among the ranks (e.g., infants,

children, teenagers, adults—ordered by “age”), the penalty of a mis-prediction de-

pends on its “closeness.” For example, the penalty of mis-predicting a child as an

adult should be higher than the penalty of mis-predicting the child as a teenager.

Thus, ordinal ranking can be casted as a cost-sensitive classification problem with

V-shaped costs, as illustrated in Figure 1 (where costs are denoted as Cy,k).

Many machine learning algorithms are designed in recent years to understand

ordinal ranking better, but the design process can be time-consuming. Our work

presents a novel alternative—a reduction framework that systematically transforms

ordinal ranking to simpler yes/no question answering, which is called binary clas-
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Figure 1: a V-shaped cost vector

sification (Li and Lin 2007; Lin 2008). At first glance, ordinal ranking seems more

difficult than binary classification. Nevertheless, our framework reveals a surpris-

ing theoretical consequence: ordinal ranking is, in general, as easy as (or as hard

as) binary classification (Lin 2008). Most importantly, our framework immediately

brings research in ordinal ranking up-to-date with decades of study in binary classi-

fication. In particular, well-tuned binary classification algorithms can be effortlessly

casted as new ordinal ranking ones, and well-known theoretical results for binary

classification can be easily extended to new ones for ordinal ranking. Along with

the reduction results, we proposed several new ordinal ranking algorithms, all of

which inherited strong theoretical guarantees and empirical benefits from binary

classification (Lin and Li 2006; Li and Lin 2007; Lin 2008).

Given the success stories in the special ordinal ranking setup, we are interested

in extending our results to the more general cost-sensitive classification setup. One

specific research question and some preliminary results are as follows.

How do we design better large-scale cost-sensitive classification algo-
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rithms?

By “better”, we mean better-suited for specific purposes. There is one current

focus point: more efficient cost-sensitive classification algorithms when the number

of categories or the number of examples is large. There is a strong need of such

algorithms in real-world applications like computer vision. In computer vision,

there are usually hundreds of categories in a typical object recognition problem,

and there can be many training examples in total. Then, existing cost-sensitive

classification algorithms either become too slow or do not perform well. Since one

of the major applications of cost-sensitive classification is object recognition (e.g.

human is closer to monkey than to fish), we hope to design some concrete algorithms

for those applications. We have designed two novel algorithms, the “cost-sensitive

one-versus-one” (CSOVO) and “cost-sensitive one-versus-all” (CSOVA). The latter

is especially suited when the number of categories is large (Lin 2008).

In our previous work (Lin 2008), we have obtained the following experimental

results when comparing the proposed CSOVA and CSOVO algorithms with their

original versions. All these algorithms obtains a decision function by calling a binary

classification algorithm several times. We take the support vector machine (SVM)

with the perceptron kernel (Lin and Li 2008) as the binary classification algorithm

in all the experiments and use LIBSVM (Chang and Lin 2001) as our SVM solver.

We use six benchmark classification data sets: vehicle, vowel, segment,

dna, satimage, usps (Table 2).1 The first five comes from the UCI machine

learning repository (Hettich, Blake and Merz 1998) and the last one comes from

Hull (1994).

The six data sets in Table 2 were originally gathered as regular classification

problems. We follow the procedure used by Abe, Zadrozny and Langford (2004)

to test the algorithms. In particular, we generate the cost vectors from a cost

function C(y, k) that does not depends on the input. C(y, y) is set as 0 and C(y, k)

1They are downloaded from http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
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Table 2: Classification data sets
data set # examples # categories (K) # features (D)
vehicle 846 4 18
vowel 990 11 10

segment 2310 7 19
dna 3186 3 180

satimage 6435 6 36
usps 9298 10 256

is a random variable sampled uniformly from
[
0, 2000 |{n : yn=k}|

|{n : yn=y}|

]
.

We randomly choose 75% of the examples in each data set for training and leave

the other 25% of the examples as the test set. Then, each feature in the training

set is linearly scaled to [−1, 1], and the feature in the test set is scaled accordingly.

The results reported are all averaged over 20 trials of different training/test splits,

along with the standard error.

SVM with the perceptron kernel takes a regularization parameter (Lin and Li

2008), which is chosen within {2−17, 2−15, . . . , 23} with a 5-fold cross-validation (CV)

procedure on the training set (Hsu, Chang and Lin 2003). For the original OVA

and OVO, the CV procedure selects the parameter that results in the smallest

cross-validation regular classification cost. For the other algorithms, the CV proce-

dure selects the parameter that results in the smallest cross-validation cost-sensitive

classification cost based on the given setup. We then rerun each algorithm on the

whole training set with the chosen parameter to get the decision function Finally,

we evaluate the average performance of the decision function on the test set.

We compare CSOVA and CSOVO with their original versions in Table 3. We see

that CSOVA and CSOVO are often significantly better than their original version

respectively, which justifies the validity of the cost-transformation technique and

our proposed algorithms. We intend to use the computing power of the NTU CC

clusters for more large-scale experiments.
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Table 3: Test cost of cost-sensitive classification algorithms
data one-versus-all one-versus-one
set OVA CSOVA OVO CSOVO

vehicle 189.064±17.866 158.215±19.833 185.378±17.235 145.745±18.404
vowel 14.654±1.766 14.386±1.717 11.896±1.955 19.277±1.899

segment 25.263±2.015 25.434±2.208 25.153±2.109 25.618±2.664
dna 44.480±2.771 39.424±2.521 48.152±3.333 51.961±4.543

satimage 93.381±5.712 77.101±4.762 94.075±5.488 65.812±4.463
usps 23.087±0.709 22.793±0.710 23.622±0.660 22.103±0.721

(those within one standard error of the lowest one are marked in bold)
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