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ABSTRACT 
Social Network is a powerful representation and visualization 

schema that allows the depiction of the relationships information 

between entities. However, for real-world tasks, the constructed 

heterogeneous networks are usually too complex for users to 

perform advanced investigations. In this paper, an unsupervised 

mechanism is proposed for egocentric information abstraction and 

visualization in heterogeneous social networks. Our abstraction 

consists of two levels. The first level of abstraction is a 

summarization process that maps the egocentric heterogeneous 

network onto a vector-space domain by identifying linear 

combination of link types as features and computing several 

statistical dependencies as feature values. The second level of 

abstraction focuses on using four diverse abstraction criteria to 

distill representative and/or informative messages, and use them to 

reconstruct the abstracted networks for visualization. The 

evaluations were conducted on a real world movie dataset and an 

artificial crime dataset. The experimental results not only 

demonstrate the abstracted networks but also show that such 

abstraction and visualization can facilitate more accurate and 

efficient crime investigation for human subjects. 

Categories and Subject Descriptors 

H.2.8 [Database Management]: Database Applications – Data 

Mining; H.3.3 [Information Storage and Retrieval]: Information 

Search and Retrieval – Information Filtering; J.4 [Computer 

Applications]: Social and Behavior Sciences – Sociology. 

General Terms 

Algorithm, Human Factors, Measurement. 

Keywords 

Social networks, heterogeneous networks, egocentric, information 

abstraction, visualization. 

1. INTRODUCTION 
“Information abstraction” generally refers to the summarization of 

a raw, overwhelmed information into a more concise form while 

still retain the important and meaningful message. The significant 

information is retained and possibly reorganized to a human-

understandable representation while the trivial one is filtered and 

discarded. Our work explores the possibility of applying the 

concept of information abstraction to the social network or graph 

domain. Furthermore, to facilitate advanced mining or 

information retrieval on a social network, we argue that such 

abstraction has to emphasize on an egocentric view. Borrowing 

from social network literatures [19], the node of interests can be 

referred as the “ego”. The ego node and its directly or indirectly 

connected neighbors compose a so-called ego-centered or 

egocentric network. The egocentric information abstraction 

highlights on the micro viewpoint of the network. In other words, 

the kind of information to be retained or discarded should depend 

on the ego node that users intend to pay attention to. Therefore, as 

can be seen in our experiments, an egocentric abstraction can 

assist human in answering questions like “which individual might 

be suspicious”, or “what is special about a specified movie star”.  

One important characteristic of this study is that we pay special 

attention to a kind of data structure called heterogeneous social 

networks [19]. A heterogeneous social network contains a set of 

typed nodes (i.e. nodes can be movies, actors, or directors in the 

movie domain) and typed edges as relations (e.g. friends, family, 

directs). Our goal is to perform the ego-centered information 

abstraction in this kind of heterogeneous social network.  

 

Figure 1: A heterogeneous network for movie domain. The 

capital letter of each node stands for its type: M(movie), 

D(director), A(actor), and W(writer). 

Despite many efforts have been put on social network analysis 

in recent years, most of the existing methodologies assume that 

there are only one object type on nodes and one relation type on 

edges in the network, which is defined as homogeneous social 

networks. For example, a Web can be regarded as a homogeneous 

social network considering there is only one type of node 

(webpage) and relation (hyperlink). However, in the real-world 

modeling, the heterogeneous social networks do provide a much 

powerful representation potential since it describes complex 

relationships among numerous different objects. For example, a 

movie network shown in Figure 1 takes movies(M), directors(D), 

writers (W), and actors(A) as nodes, and the corresponding 
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relationships as tuples such as “<D, direct, M>”, “<M, has_actor, 

A>”, “<M, originate_from, M>”, “<A, spouse_of, A>”, and “<W, 

write_script, M>”, where the first element in the tuple represents 

the type of the source node, the second element as the type of the 

relations, and the third element as the type of the target node.  

The concept of “information abstraction” has not yet been 

formally defined in the domain of heterogeneous social network. 

Nevertheless, the essences of several research topics in social 

network analysis such as centrality analysis, group detection, etc., 

are indeed related to information abstraction in some sense. 

Despite this, they all suffer certain deficiencies and our major goal 

is to design an information abstraction mechanism for networks 

that deals with those problems. Below we discuss several main 

deficiencies of the existing ideas in social network abstraction: 

• Losing topological knowledge. Degree distribution, network 

diameter, average path length, and other network statistics 

are global features which exploit simple statistics to 

summarize certain characteristics of a network [5][12]. They 

can be regarded as a kind of abstraction for social networks. 

Although such abstractions can be attained easily, they 

suffer a major drawback as not keeping sufficient 

topological information of a social network.  

• Ignoring higher-order relationship information. There are 

works aiming at taking the network structure or topology 

into consideration for analysis, such as PageRank [3] and 

Centrality analysis. However, those methods simply treat 

any network as a homogeneous one by ignoring the 

difference between node types and relation labels. The same 

problem occurs in network statistics and community 

detection. One of the major contributions of our framework 

lies in the unbiased, fully automatic mechanism that takes 

beyond single-step relation information into account during 

the process of abstraction. That is, our approach not only 

considers the types of relation but also model the correlation 

amount relations as well as the dependency between set of 

relations  and entities. 

• Non-egocentric view of the world. Existing community 

detection frameworks such as cohesive subgroup finding 

[13][21] tries to identify representative groups in a network. 

While providing a macro view on how the social network 

can be simplified as a whole through identifying groups, 

such mechanism suffers a drawback of not being able to 

produce an egocentric analysis about a specific entity. Our 

work focuses on generating a kind of abstraction whose 

focus may shift depending on which ego is chosen.  

• User-unfriendly outputs. Existing information abstraction 

research rarely considers the issue of presenting their results 

in a user-friendly form. For example, some graph mining 

methods such as frequent graph pattern mining [18][22] can 

also be regarded as a kind of non-egocentric abstraction. 

However, those works did not explicitly discuss how the 

results can be displayed for comprehensible and concise 

purpose. Here we argue that a suitable social network 

abstraction mechanism should accompany with a 

comprehensible visualization means. Since social networks 

are inherently visual, we hope that our abstraction model 

can be seamlessly fitted into a visualization mechanism. The 

existing visualization research, however, has not really 

considered the issue of abstraction in a deeper sense. For 

instance, L. Freeman [6] designed several principles for 

network visualization by taking color, position, shape, and 

size into considerations; other works [1][7] focus on 

developing intelligent visualization techniques that 

facilitates better explorations. Our work, to a certain extent, 

tries to bridge the gap between mining and visualization on 

social networks.  

To conquer the above drawbacks and provide an unsupervised 

(which implies that human biases can be minimized), intuitive, 

and efficient mechanism for egocentric information extraction and 

visualization, we propose a model that integrates both symbolic 

and statistic information retrieval techniques. Our framework first 

tries to model the semantics of any given ego node, and then to 

distill the representative and/or informative features. The 

semantics of any ego node is modeled by its surrounding 

substructure (i.e. within k steps from the ego node) together with 

the label information. Furthermore, four abstraction views, 

namely local frequency, local rarity, relative frequency and 

relative rarity are proposed to serve as the distilling criteria for 

abstraction. Finally, it tries to construct the abstracted graph for 

visualization using only the distilled information. The flowchart 

of our system is shown in Figure 2. 

The contributions of this work can be summarized as: 
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Figure 2: The Flowchart of Proposed Egocentric Information Abstraction in Heterogeneous Social Networks. 



• We have proposed a research problem as finding 

abstraction for heterogeneous social networks, which aims 

at a kind of egocentric analysis which facilitates further 

visualization of data. Our design has the following 

advantage 

a) The topological (or structure) and relational (or 

semantics) information are simultaneously taken into 

account for abstraction purpose.  

b) We provide four views of abstraction, each of which 

encompasses its own physical meaning. 

c) The abstracted results can be represented as the 

simplified heterogeneous social network for 

visualization. 

• We have implemented such egocentric abstraction system 

and conducted experiments on both real-world and 

synthetic dataset. The experiments not only demonstrate the 

usability of our approach but also show that the designed 

egocentric abstraction can assist human analyst in making 

more accurate, efficient, and confident decision.  

The rest of the paper is organized as follows. The model and 

methodology of analysis are discussed in the next section. The 

experiment results are reported in Section 3. Section 4 describes 

the related works and section 5 discusses some relevant issues. 

We conclude in the final section. 

2. Methodology 
We first provide a formal definition on the egocentric information 

abstraction problem in heterogeneous social networks: 

Given: (a) a heterogeneous network H, (b) the query vertex x, 

represents the ego, and (c) the information filtering threshold δ 
(0 ≤ δ≤ 1). 

Outputs: visualized egocentric abstracted of x, each of which 

belongs to the subgraph of H and corresponds to one of the four 

proposed abstraction views. 

Definition 1. (Heterogeneous Networks) A heterogeneous 

network H(V, E, L) is a directed labeled graph, where V is a finite 

set of nodes, L is a finite set of labels, and VLVE ××⊆  is a finite 

set of edges. Given a triple representing an edge, the source, label, 

and target map it onto its start vertex, label, and edge vertex, 

respectively. The function types(V) → {{t1,…,tj}, ti ∈ L, j ≥ 1} 

maps each vertex onto its set of type labels. 

A heterogeneous network consists of the topological part and 

relational part. The nodes are various types of actors, each of 

which is surrounded (up to a certain distance) by certain 

combinations of diverse links (relations) and nodes. In other 

words, the semantics of a node in a given heterogeneous network 

is captured by the information of its neighborhood links and 

nodes. Hence, we propose to summarize the semantics of a given 

ego node through combining its surrounding linear substructure 

(i.e. sequences of labels) together with the statistical dependency 

measures obtained through certain sampling techniques.  

The egocentric information abstraction can be divided into four 

main stages. First, a set of features are automatically selected and 

extracted according to surrounding network substructure of the 

specific node. They will serve as the basis of summarization. 

Second, the statistic dependency measures between the features 

and the ego node are generated to represent the ego node. Third, 

we apply certain distilling criteria to remove less relevant or less 

informative information.  Finally, an egocentric abstracted graph 

can be constructed in an incremental manner that allows the users 

to visualize the results. The elaboration of these four stages is 

provided in section 2.1 to 2.4. 

2.1 Feature Extraction 

For egocentric abstraction, we first extract the surrounding 

subgraph of the ego up to a given length k (in our experiments, we 

choose k=2 or 3). Constraining on the size of the neighborhood is 

reasonable since in network analysis it is usually assumed farer 

away nodes do not have as significant inference as closer ones. 

Based on the given range k, a k-neighborhood graph Hki of the 

given node i is extracted. Hki, contains all the nodes and their 

corresponding relations within k steps to the ego. For example, 

the 2-neighborhood graph H2A1 of A1 in Figure 1 is illustrated in 

Figure 3.  

 

Figure 3: 2-neighborhood graph H2 of A1 in Figure 1 (k=2).  

The next step is to select a set of representative features as the 

basis to summarize the ego node. We first exemplify the idea 

using Figure 3, starting by listing two-step (k=2) paths that start 

from a specific node, A1, as shown in Table 1. Note that the 

inverse edge set E-1 is the set of all edge (v1, l-1, v2) such that (v2, l, 

v1) ∈E. Besides, a path p in H is a sequence of edges (e1,e2,…,en), 

n ≥ 1, such that each ei∈E and target(ei) = source(ei+1). 

Table 1: Two-step paths from A1 of Figure 3. 

path1 A1 – hasActor
-1 – M1 – writeScript

-1 – W1 

path2 A1 – hasActor-1 – M3 – writeScript-1 – W2 

path3 A1 – hasActor-1 – M1 – direct-1 – D1 

path4 A1 – hasActor-1 – M3 – direct-1 – D1 

path5 A1 – spouseOf – W2 – writeScript – M3 

path6 A1 – hasActor-1 – M3 – hasActor – A3 

Path7 A1 – hasActor-1 – M3 – originateFrom – M4 

 

Table 2: Two-steps LCRs from A1 of Figure 3. 

LCR1 <hasActor-1, writeScript-1> 

LCR2 <hasActor-1, direct-1> 

LCR3 <childOf, writeScript> 

LCR4 <hasActor-1, hasActor> 

LCR5 <hasActor-1, originateFrom> 

We propose to use a linear combination of relations (LCR) as 

the base to represent the surrounding structure of a given node. 



For example, the paths in Table 1 can further be condensed to a 

set of LCR as shown in Table 2. Each linear combination of 

relation can be regarded as a kind of behavior of A1. 

2.2 Statistic Dependency Measure 

Given the LCRs are generated as the bases, we then design two 

random experiments applying to the k-neighborhood network. A 

random experiment, by definition, is an experiment, trial, or 

observation that can be repeated numerous times under the same 

conditions, and each outcome is I.I.D. In the first random 

experiment (RE1), we randomly select a node (say, x) from the 

network, then we randomly select an edge starting from x (say, 

<x,L1,y>), further we randomly select another edge starting from y 

(say, <y,L2,z>), so on and so forth. We stop when the number of 

links chosen is k, where k corresponds to the predefined k-

neighborhood. The second random experiment (RE2) looks very 

similar to the first, except that we start from a randomly chosen 

edge (say, <a,R,b>) instead of a node. Next we randomly pick 

another edge starting from b. Again, this goes on until k links are 

chosen. The outcome for either experiment is a path, and based on 

which we can define two random variables X and L. X represents 

the starting node of this path (e.g. in this example, one realization 

of X is x) and L represents the LCR of this path (e.g. in this 

example, one instance of L is <L1,L2…Lk>). We would use X1 

and X2 to denote the starting node generated by RE1 and RE2, 

respectively, and same applies to L1 and L2.  

Table 3: Conditional probabilities of RE1: P(L|X). 

Feature           

Node 
L1 L2 L3 L4 L5 … L100 

X1 0.2 0.24 0.11 0 0 … 0.2 

X2 0.31 0.01 0.4 0.01 0 … 0.08 

… … … … … … … … 

X1000 0 0 0.11 0.02 1 … 0.2 

 

Table 4: Conditional probabilities of RE2: P(X|L). 

Feature           

Node 
L1 L2 L3 L4 L5 … L100 

X1 
0.01

(99) 

0.04 

(155) 

0.1 

(2) 

0.5 

(1) 

0 

(500) 
… 

0 

(300) 

X2 
0.11 

(22) 

0.1 

(1) 
… … … … 

0.08 

(221) 

… … … … … … … … 

X1000 0 0 … … … … 
0.12 

(12) 

 

With these four random variables, we then define two 

conditional probability mass functions P(L1=m|X1=n) and 

P(X2=n|L2=m). P(L1=m|X1=n), which we call local frequency of 

the ego node, essentially stands for the probability that if from n 

one randomly picked  k-step LCR in fact equals m. On the 

contrary, P(X2=n|L2=m), which we call the relative frequency of 

an ego node, represents the probability that a specific node n is 

involved as the starting node in an LCR whose form is m. The 

former probability is considered as “local” because this particular 

LCR feature is compared with other LCR feature starting from the 

same ego node (regardless how it distributed in the rest of the 

network). The later conditional probability is called “relative” or 

“global” frequency measure since this value will depend on how 

this feature is distributed in the whole network. 

After sampling both RE1 and RE2 for sufficient amount of 

times, it is possible to create two tables, i.e., Table 3 and Table 4, 

which consist of the estimation of the corresponding conditional 

probabilities. We call such tables the vector-based summarization 

of nodes. Note that the probability of each row sums to 1 in Table 

3 while in Table 4 the probability of each column sums to 1.  

2.3 Information Distilling 

We propose two distilling policies, frequency-based and rarity-

based policy to distill different kinds of information for 

abstraction. Rare and frequent basically occupy two opposite ends 

of the spectrum. We feel that each reveal either important or 

potentially interesting information about a given node. Frequent 

behavior is generally important for pattern recognition and rare 

events (i.e. those are not supposed to happen but truly happened) 

sometimes can lead to certain unexpected discovery. Integrating 

these two policies with two views (i.e. local and relative view), we 

can create four kinds of abstraction measures (summarized in 

Table 5), and each serves its unique purpose.   

Table 5. Four abstraction measures from different aspects. 

 Absolute (local) Comparative (global) 

Frequent (1) Local Frequency (3) Relative Frequency 

Rare (2) Local Rarity (4) Relative Rarity 

 

Below we provide some intuitive discussion for each of them 

using an example:  

Given Table 3 and Table 4, now it is possible to generate the 

vector-based summarization of an ego node by identifying one 

row from each table corresponding to it. Table 6 and Table 7 

describe the vector from Table 3: P(L|X) and Table 4: P(X|L) for a 

given node x respectively (assuming there are only 7 LCR’s in 

this dataset). Note that in Table 7 we also list the ranking of each 

P(X|L) comparing with all the same-type nodes in the network, 

The values are shown inside the parentheses. For example, in 

Table 7, P(X=x|L4)=0 ranks 999 implies there are 999 same-type 

nodes in the whole network since it possesses the smallest 

probability. 

Table 6: The Local-based Vector of X. 

 L1 L2 L3 L4 L5 L6 L7 

T1:P(L|x) 0.01 0.02 0 0 0.1 0.3 0.5 

 

Table 7: The Relative-based Vector of X 

 L1 L2 L3 L4 L5 L6 L7 

T2:P(x|L) 
0.05 

(769) 

0.15 

(5) 

0.11 

(2) 

0 

(999) 

0.01 

(888) 

0.1 

(3) 

0.1 

(34) 

 

(1) Local frequency: It basically chooses the frequent P(L|x) 

elements from the vector as important ones. For example, if 

the threshold δ is set to 2/7, the system will pick only the top 

two most frequent LCR (i.e., L6 and L7) to represent x. In 

other words, L1 to L5 are filtered out since they do not occur 

as frequent as other LCRs with respect to x. The intuition 

behind this view is that x is summarized by the most frequent 

sequential patterns that it involves. 



(2) Local Rarity: Opposite to (1), the rarity view of abstraction 

keeps the rare event that happens to x and ignores the 

frequent ones. In this example given δ=2/7, L1 and L2 will 

be distilled while the rest will be ruled out. Note that the 

“rare event” considers only those happens at least once, 

therefore excludes those whose conditional probability is 0 

such as L3 and L4. The intuition behind this view is that rare 

LCR could indicate something that shouldn’t happen but in 

fact happens, and thus demands more attention. The other 

reason that such view of abstraction should exist is that rare 

events in a large network are generally harder to detect 

manually than frequent ones.  

(3) Relative Frequency: The view of (3) and (4) utilizes Table 4 

instead of Table 3. The conditional probability P(X=x|Lk) in 

fact represents how frequent the ego node x is involved in a 

kind of LCR. Since∑ =
X

LXP 1)|( , it is possible to treat 

each column in Table 4 as a relative comparison among all 

Xs for a given LCR. This kind of view believes P(X=x|Lk) is 

representative for x if this value is relatively high comparing 

with other nodes. Furthermore, since a heterogeneous social 

network generally contains different types of nodes (e.g. 

actors, directors, movies, etc), it makes more sense to 

compare only nodes of the same type while determining the 

rank of P(X|L). For example, it might not make sense to 

compare the number of publications among people from 

different research areas. In this example, L3 and L6 will be 

chosen to represent x since they are relatively high (i.e. 

ranked 2nd and 9th) comparing with other nodes of the same 

type. The intuition behind this view is that it chooses the 

features that can best characterize x. 

(4) Relative Rarity: Similarly to what (2) is to (1), here we claim 

that some features that happen relatively rare to x might also 

indicate something worth reporting. In this example L1 and 

L5 will be distilled since they do not occur as frequently to x 

as they do to others. This view basically tells us something 

that x does but not as frequently as other nodes.  

2.4 Abstracted Graph Construction 

Until now, our system is capable of generating a condensed 

feature representation as the abstraction of a given ego node. One 

plausible output form will be to report the distilled LCR and their 

conditional probabilities to the users. Although it seems to be a 

reasonable outputs since the P(X|L) or P(L|X) can serve as a term 

that explains why such abstraction is made, an alternative and 

probably more understandable representation will be to translate 

the distilled information back to a graph. In this section, we would 

like to propose a method that does so.  

Recall that the LCRs of the ego node were obtained through 

enumerating the plausible combination of relations starting from 

the ego. We can perform the reverse engineering of such process 

(can be regarded as a kind of pattern recognition) to generate a 

subgraph that is composed of only the distilled LCR’s and their 

corresponding nodes. 

Figure 4 provides a graphical analysis of such process. 

Assuming based on relative frequency we decide to keep the top 2 

ranked LCRs and filter out the rest. We can first use L1 to match 

the original network to obtain a subgraph that originates from the 

ego node and contains all the nodes involved in L1 (see Figure 

5(a)). Subsequently we can perform the same action on the second 

highest LCR until the threshold is reached. In this example, the 

final abstracted graph of the ego node looks like Figure 5(b). 

Note that it is not feasible to create such condensed graph by 

removing the ruled out LCR from the original network. It is 

because the links involved in one LCR might also occur in others; 

therefore eliminating one of them completely will sometimes 

cause the other LCRs to disappear, which can lead to error when 

the disappeared LCRs happen to be the representative ones.  

 

 

3. EVALUATIONS  
The evaluations can be divided to two parts. The first experiment 

focuses on demonstrating how the proposed framework can be 

performed on a real-world movie network dataset. We would 

demonstrate the resulted abstracted graph based on different 

abstraction measures. The second experiment is designed to assess 

the quality of the abstraction through human studies on a crime 

dataset. The goal is to find out whether the egocentric abstraction 

can improve the accuracy and efficiency of human decisions.  

3.1 Case Study for a Movie Network 

We apply our egocentric information abstraction on a movie 

network dataset to exhibit the abstracted graphs according to 

different abstraction views. The social network is generated from 

extracting entities and relations from UCI KDD Archive movie 

dataset [8]. In this network, there are about 24,000 nodes 

representing movies (9,097), directors (3,233), actors (10,917), 

and some other movie-related persons (500) such as producers 

and writers (the numbers in parentheses show the number of 

different instances for each node type). We also extract 126,926 

relations between these nodes. Totally, there are 44 different 

relation types in the movie network, which can be divided into 

three groups: relations between people (e.g., spouse and mentor), 

relations between movies (e.g., remake), and relations between a 

person and a movie (e.g., director and actor). The amount of 

diverse relations makes it a complicated heterogeneous social 

network for human to analyze. 

Here we use a “Meg Ryan”, a famous actress, as the ego node 

to demonstrate the egocentric abstracted graphs. We have to first 

point out that this UCI KDD dataset is not a complete dataset 

while some information is missing. Therefore certain statistics 

collected based on it might not reflect the real-world results. The 

Figure 4: An example Hk with the corresponding AFL. 

id Ranked LCRs Score 

L1 i-r1-*-r4

-1
-* 0.36 (2) 

L2 i-r1-*-r2

-1
-* 0.08 (5) 

L3 i-r3

-1
-* 0.09 (10) 

L4 i-r3

-1
-*-r4-* 0.02 (79) 

L5 i-r1-* 0.005 (99) 
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Figure 5: (a) The abstracted graph after adding L1 (b) The 

final graph after both L1 and L2 are added 
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k-neighborhood graph of “Meg Ryan” is shown in Figure 6, where 

k=2. Despite the seems-to-be small neighborhood size, from 

Figure 6 we can learn that it is already very complicated since 

there are 116 nodes, 137 edges and 18 different LCRs. In the 

following, the filtering threshold δ is set to around 20%.  

 

Figure 6: The 2-neighborhood graph of “Meg Ryan.” 

First of all, the abstracted graph of local frequency is shown in 

Figure 7, which captures the regular behaviors of Meg Ryan. We 

can observe that she has been acted in many movies, especially for 

comedic, dramatic, and romantic categories. Besides, her husband, 

Dennis Quaid, is also an actor that of many movies. They co-

starred in three of them.  

 

Figure 7: Local frequency of “Meg Ryan.” 

The abstracted graph of local rarity is shown in Figure 8. This 

is to capture the rare but existed behaviors of Meg Ryan. We can 

observe that she is also a producer of a movie (i.e., lak16), which 

is the only movie she produced according to this dataset. In 

addition, her husband’s brother (named Randy Quaid) also works 

in movie industry (since only movie-related persons are listed in 

this dataset). Finally there is a movie she acted (noe3) whose 

cinematographer (denote as ‘c’ here) is listed in this dataset. This 

becomes a rare pattern since for other movies she has played in 

their cinematographer are not listed. 

 

Figure 8: Local rarity of “Meg Ryan.” 

Third, the abstracted graph of relative frequency is shown in 

Figure 9, which compares the behaviors of Meg Ryan with other 

actors (note: not all other persons in the dataset) and find those 

behaviors which is significantly to her. We can observe an 

interesting behavior of her that she acted in relatively many 

remade movies. Also she produced a movie (i.e., lak16) and such 

behavior does not appeal frequently among other actors. Finally, 

one rare path of her in Figure 8, namely his husband’s sibling is 

also a movie person, turns out to be rare among other actors as 

well, and thus becomes a relatively frequent behavior of her (that 

is, there is very few others in this dataset whose husband’s sibling 

is also a movie person).  

 

Figure 9: Relative frequency of “Meg Ryan.” 

Finally, the abstracted graph of relative rarity is shown in 

Figure 10. This identifies something she did, but not as 

unique/special as other behaviors of her. We can see that her 

movies received three awards (i.e., ‘cg_aw’, ‘h_aw’, and ‘re_aw’). 

Since there are other persons whose movies won awards, this 

turns out to showcase that she also has similar behavior but not as 

frequent as some other people. Also it is interesting to know that 

she played in one movie that was later reproduced to another one.  

 

Figure 10: Relative rarity of “Meg Ryan.” 



In this case study, we have used a heterogeneous movie 

network to demonstrate which kinds of information can be 

revealed through which egocentric views. We have also 

demonstrated that through our abstraction mechanism, it is 

possible to find not only some expected details (e.g. Ryan acted in 

many romantic movies) but also some unexpected yet interesting 

facts (e.g. Ryan acted in many remade movies and produced a 

movie) about the ego node. It might even satisfy some hard-core 

fans by revealing certain information about her ex-husband. 

3.2 Human Study: Crime Identification 

In the second experiment we evaluated the quality of the 

abstracted visualization by applying our system to a 

heterogeneous network in crime domain and ask human subjects 

to identify the crime participants for us. The goal of the evaluation 

is three-fold: First, we want to know whether and which of the 

egocentric abstracted graphs can assist human subjects in making 

more accurate decisions in terms of identifying the criminal 

participants. Secondly, whether the proposed abstractions can 

reduce the time the subjects need to perform such identification. 

Finally we would like to learn whether the human subjects feel 

more confident of their decision given the abstracted information. 

 

Figure 11: Event-type hierarchy of the simulated Russian 

organized crime data. 

The crime dataset we used is part of a large suite of simulated 

dataset developed during the US Defense Advanced Research 

Projects Agency (DARPA)’s Evidence Extraction and Link 

Discovery Program for the purpose of evaluating link discovery 

algorithms such as pattern matchers, group detectors, etc., (see [14] 

for additional contexts). The data was generated by a simulator of 

a Russian organized crime (or Mafiya) domain that simulates the 

whole process of ordering, planning, and executing high-level 

criminal activities such as murders for hire or gang wars with a 

large number of possible variations and records an incomplete and 

noisy picture of these activities in the generated evidence files 

(e.g., financial transaction, phone calls or email, somebody being 

observed at a location, somebody being killed by someone 

unknown, etc.). The hierarchy of event types is shown in Figure 

11. The highest level events, gang wars and industry takeovers, 

both involve lower level events such as contrast murders, which in 

turn involve some planning, financing, execution, etc.  

The dataset we employ contain 9,429 nodes, and 16,257 links. 

There are 16 different node types representing objects and events 

and 31 different link types representing the relationships between 

those nodes, as shown in Table 8. It contains 42 Mafiya groups, 

and 20 contract murder events. On the other hand, the 

observability of the dataset is quite low, which means some of the 

events are not shown in the data (the higher level an event is, the 

higher change it would be omitted, and level 5 events are 

completely unseen in the data). Besides, the noise of the dataset is 

occurred to some extent. That is, some information about the links 

are missed or even labeled incorrectly. Such data can, presumably, 

cause some problem for the human analyst. 

The experiment setup is as follows: we first choose 10 plausible 

gang nodes among which three were truly involved in the highest 

level events (gang war and industry takeover). For each gang node, 

four different views of egocentric abstracted graphs were 

generated. Together with the original k-neighborhood graph (we 

choose k=3 in this experiment), we will present five sets of data 

and each set consists of ten visualized graphs, each ego-

centralized on the corresponding candidate. To avoid interference 

among different tasks, the IDs of all candidate instances are 

randomly given for each task. Five sets of resulted graphs are 

shown to a total of 20 users (subjects were not instructed in which 

order of datasets they should pursue) and the users were asked to 

select three (out of ten) nodes that are most likely to commit high-

level crimes. Therefore we can examine how many out of the 

20*3=60 possible outcomes were picked correctly. Before the 

experiment, the subjects were asked to study the background 

knowledge of this domain so they understand the meaning of each 

relation and the node types.  

Table 8: Node and relation types for the terrorism network. 

Node Types Relation Types 

BankAccount accountHolder orgMiddleman 

Business callerNumber payee 

Email ceo payer 

Industry dateOfEvent perpetrator 

Mafiya deliberateActors phoneNumber 

Meeting deviceUsed receiverNumber 

Murder employees recipient 

MurderForHire eventOccursAt relatives 

Observing geoSubregions sender 

Paying hasMember socialParticipants 

Person mediator subevents 

PhoneCall hitContractor transferMoneyFrom 

PhoneNumber hitman transferMoneyTo 

Planning objectsObserved victimintended 

PremeditatedMurder operatesInRegion vor 

WireTransfer orgHitman  

 

The five generated graphs of one criminal node is illustrated in 

Figure 12 to 16, which are corresponding to the original 3-

neighborhood graph, local frequency, local rarity, relative 

frequency, and relative rarity in order. Note that the filtering 

threshold δ is set to 0.2, which implies we only keep 20% of the 

LCRs during abstraction. And the black nodes are nodes 

representing criminal candidates. 

Gang Industry Takeover 

Murder for 

Plannin Payin Premeditated 

Email 

Meetin

Phone call 

Wire Observin Murde

Level 

Level 

Level 

Level 



 

Figure 12: The original 3-neighborhood graph. 

 

 

Figure 13: Abstracted graph of local frequency. 

 

Figure 14: Abstracted graph of local rarity. 

 

Figure 15: Abstracted graph of relative frequency. 

 

Figure 16: Abstracted graph of relative rarity. 

The results are displayed in Table 9. We also show the 

improvement over k-neighborhood graph in the first column and 

95% confidence interval for average time and confidence.  

Table 9. Raw k-neighbor graph and four abstraction measures 

from different aspects with their 95% confidence interval. 

 
Avg. 

Precision 

Avg. Time 

(minutes) 

Avg. 

Confidence 

k-Neighborhood 

Graph 
39/60 36.6 ± 6.6 3.15 ± 0.36 

Local Frequency 
41/60 

(+3.3%) 
18.9 ± 5.9 3.20 ± 0.35 

Local Rarity 
44/60 

(+8.7%) 
13.9 ± 3.7 3.45 ± 0.33 

Relative 

Frequency 

47/60 

(+13.3%) 
10.9 ± 2.2 3.73 ± 0.39 

Relative Rarity 
40/60 

(+1.6%) 
11.3 ± 2.5 2.85 ± 0.27 

 



In terms of accuracy, the results show the users can at least do 

as good as using the original graph while using the abstracted 

ones. Since the non-abstracted graph contains the complete 

information, it makes sense to assume that subjects can do as good 

as using the abstracted ones at the cost of spending more time on 

the data. Our explanation for the reason that the users can even 

perform better (the improvement can be as high as 13.3%) in the 

abstracted graph is that although certain information is lost during 

abstraction, it is likely the critical messages are remained while 

some noise is filtered out, and therefore lead to better results. The 

major improvement, as shown in the second column of Table 9, 

lies in efficiency. The results show that users utilize significantly 

less amount of time (<50%) to reach at least equal-quality results. 

The improving on both accuracy and efficiency truly demonstrate 

that the abstraction is capable of facilitating further human 

analysis since it retains the critical information and significantly 

remove uninformative one.  

In this dataset, there are some “key evidences” that can indicate 

the high-level events. After analyzing four kinds of abstracted 

graphs manually, we have realized each abstraction view more or 

less captures different parts of those key evidences. For example, 

a kind of LCR that represents “the gang has hired some 

middleman intending to pursue something illegal” happens only 

to the high-level crime participants; therefore it can be highlighted 

using the relative frequency view, which becomes an important 

evidence for the human subjects to make the right decision. This 

is the major reason that this view eventually leads to the best 

results among others. We have also realized that the relative rarity 

view does not reveal significant improvement over accuracy and 

even results in worse confidence. We believe this is because 

naturally this view reveals the behavior that occurs but not as 

frequent as others, which might not be as helpful to identify 

suspicious instances as other kinds of behaviors. 

4. RELATED WORKS 
Graph Summarization: Graph summarization mainly aims at 

generating compact and understandable summarized 

representation for a large graph. It is a relatively new topic and 

has been tackled from the view of database management recently. 

L. Zou et al. [24] proposed a Summarization Graph, which 

captured the topological information of the original homogeneous 

graph to handle the sub-graph search problem. It is not trivial how 

their approach can be adopted to a heterogeneous graph. Y. Tian 

et al. [17] introduced the OLAP-style operations to summarize 

multi-relational graphs, where users can apply drill-down or roll-

up to control the resolution of summarization. However, they did 

not consider the egocentric view, nor do they take the linear 

combinations of relations into consideration (only immediate links 

of nodes are considered). Their summarization also lacks an 

easily- accessible graphic outputs like our visualization. S. 

Navlakha et al. [11] proposes a Minimum-Description-Length 

based principle to summarize for single-relational graph. Their 

representations of graphs allowed for both lossless and lossy 

graph compression with bounds on the indicated error, and 

produced a coarse-level aggregate graph. Nevertheless, it is not 

clear how their method can be applied to heterogeneous social 

network, and it only provides the macro view. 

Visual Analysis for Network Abstraction. Network Information 

visualization aims at efficiently displaying a large scale network 

by drawing the structural data with some simple analyses for 

human explorations. We have seen three works aiming at 

integrating the network abstraction into visualization. P. Appan et 

al. [2] summarized key activity patterns of social networks in the 

temporal domain through a ring-based visualization design. L. 

Singh et al. [16] developed visual mining software to help people 

understand the entire multi-relational networks at different 

abstraction levels. Z. Shen et al. [15] further divided the 

abstraction to structural and semantic parts, and presented a visual 

analytics tool, OntoVis, where the relations in heterogeneous 

networks were reduced based on the concept of network ontology. 

However, all of these works suffer from no providing micro view 

to facilitate user’s exploration. Furthermore, unlike our 

framework who takes multiple link combination and their statistic 

dependency into account, the above works consider only links in 

one step neighborhood, therefore cannot fully integrate the 

topological information with the relational information.  

Mining in Heterogeneous Networks. While most existing social 

network related works concentrate on homogeneous networks, 

some efforts are gradually shifted to heterogeneous networks 

recently. In the early period, W. Xi et al. [20] modeled the Web as 

a collection of multi-type interrelated data objects. Later D. Cai et 

al. [4] addresses the community detection problem in 

heterogeneous networks through learning a optimal linear 

combination of user-given relations. J. Zhang et al. [23] works on 

recommendation in a heterogeneous Web social network by a 

modified random walk along with a pair-wise learning algorithm. 

Most of these listed works take advantage of the information in 

the heterogeneous social networks. However, they do not really 

focus on summarizing the behavior of a certain object in the 

network. Besides, since they are dealing with domain specific 

problems, it is not clear how much extra efforts are needed to 

adapt the proposed methods into different domains. One 

important advantage of our abstraction lies in that it is domain 

independent and can be applied to create abstraction in different 

domains without the need to resorting to domain experts. It not 

only saves time of identifying training or annotated data but also 

avoids human biases in the analysis. Lin and Chalupsky have 

proposed some unsupervised mechanisms for heterogeneous 

social network analysis. However, the work has been mainly 

focused on anomaly detection rather than abstraction and 

visualization [9][10]. 

5. DISCUASSIONS 
There are several issues worthy of further discussions: 

a) The efficiency of our algorithm: To estimate the probabilities 

accurately, we need to sample a sufficient amount of paths, 

which becomes the bottleneck of our approach. However, a 

technique called likelihood weighting, which has been applied 

successfully in the inference procedure of Bayesian Networks, 

can be applied to force the occurrence of some rare events. 

Then the likelihood can be reweighted based on the frequency 

of the forced decisions. Furthermore, the advantage of 

exploiting sampling technique for frequency estimation is to 

facilitate the design of an anytime algorithm. That says we can 

still produce results of certain quality given insufficient time 

or resources, and the quality of the results can improve with 

the increase of the time or resources.  

b) Parameters: There are two parameters the users can use to 

control the level of abstraction: the k in k-neighborhood and δ 

as the trimming threshold and each of them has its own 

physical meaning. Increasing k can enlarge the size (or radius) 



of the network and increasing δ can boost the density of the 

graph. Therefore we recommend determining k based on the 

number of nodes and links in the network and δ based on the 

number of different link types. 

c) Union or Intersect views: In reality there can be more than 

four views of abstraction one can exploit since views can be 

integrated. For example, one can union local frequency and 

local rarity views to visualize both frequent patterns and rare 

events in the abstraction. One can also intersect the local 

frequency and relative frequency views to make sure only 

behaviors that are both frequent and representative are shown. 

6. CONCLUSIONS 
In this paper we present a method for egocentric information 

abstraction for heterogeneous social networks. Here we provide 

an alternative view about our approach: Conventionally the 

process of graph abstraction is regarded as trying different 

methods to identify certain seems-to-be irrelevant edges and 

vertexes to eliminate. However, it is non-trivial how such decision 

can be made (either manually or automatically) when the 

information is represented as a complex, heterogeneous social 

network where a node can connect to others through different 

types of links. To answer this challenge, we propose a two-level 

abstraction schema. The first level of abstraction is to transform 

the original network representation into a vector-space 

representation using symbolic modeling and sampling techniques. 

The reason to perform such transformation is that in this 

transformed domain we are allowed to apply our second-level 

abstraction as applying some simple and intuitive filtering criteria 

to determine which portion of the information should be retained. 

Finally our goal can be achieved through incrementally 

transforming the retained vectors back to the original domain of 

networks. 
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