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Abstract 
Background 
In recent years, prediction of residues in a protein chain that may be involved in 

interaction with the DNA has been a research topic that attracts a high level of interest. 

In this respect, as a recent study has revealed that the tertiary structures of a large 

number of transcription factors are mostly disordered, sequence based analysis aimed 

at identifying the residues in a highly-disordered transcription factor that play a key 

role in interaction with the DNA is essential for obtaining a comprehensive picture of 

how the TF functions. In this respect, it is further desirable to have a predictor capable 

of distinguishing those residues involved in specific binding with the DNA, since 

specific binding corresponds to sequence-specific recognition of a gene and therefore 

is essential for correct gene regulation. 

Results 
This article presents the design of a polypeptide sequence based predictor for 

identifying the specific DNA-binding residues in a transcription factor.  The design of 

the proposed predictor is distinctive by employing a hybrid approach aimed at 

achieving superior performance.  In particular, two prediction mechanisms specialized 

to make predictions with certain types of protein secondary structure elements have 

been incorporated.  In the experiments reported in this article, the proposed hybrid 

predictor has been able to deliver overall sensitivity of 59.5%, specificity of 98.8%, 

precision of 77.4%, and accuracy of 96.3%. Precision of 77.4% implies that about 3 

out of 4 predicted binding residues are really involved in specific binding with the 

DNA. On the other hand, sensitivity of 59.5% implies that the predictor can catch 

about 6 out of 10 residues involved in specific binding with the DNA. 
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Conclusions 
While the related studies reported in recent years did not distinguish between specific 

binding and non-specific binding, our study focuses on prediction of residues 

involved in specific binding with the DNA because specific binding corresponds to 

sequence-specific recognition of a gene and therefore is essential for correct gene 

regulation. Though the problem definitions of our study and the related works are not 

exactly identical, a performance comparison is of interest for obtaining a picture of 

how well the hybrid predictor proposed in this article works.  The experimental results 

reveal that in comparison with the related works the proposed hybrid predictor is 

capable of delivering superior performance in terms of the harmonic mean of 

precision and sensitivity, which is a widely used performance metric in machine 

learning research. Furthermore, the proposed hybrid predictor is capable of delivering 

much higher precision than the other predictors. We emphasize precision because it 

provides the biochemist with a confidence level for designing an experiment to 

confirm whether a predicted binding residue is really involved in interaction with the 

DNA. 

Background  
In recent years, prediction of residues in a protein chain that may be involved in 

interaction with the DNA has been a research topic that attracts a high level of interest.  

Some of the studies were purely based on analysis of the polypeptide sequence [1-5], 

while the others took the structural information into account [3, 6].  In this respect, as 

it has been reported in a recent article that the tertiary structures of a large number of 

transcription factors (TF) are mostly disordered [7], sequence based analysis aimed at 

identifying the residues in a highly-disordered TF that play key roles in interaction 

with the DNA is essential for obtaining a comprehensive picture of how the TF 

functions. 



 - 4 - 

 

Concerning protein-DNA interactions, there are two types of binding mechanisms 

involved: specific binding and non-specific binding [8].  Specific binding occurs 

between protein sidechains and nucleotide bases, while non-specific binding occurs 

between protein sidechains and the DNA sugar/phosphate backbone. In molecular 

biology, specific binding corresponds to sequence-specific recognition of a gene and 

therefore is essential for correct gene regulation. Fig. 1 illustrates these two types of 

binding mechanisms with a complex in the Protein Data Bank (PDB). In Fig. 1, a 

residue is regarded as involved in specific binding with the DNA, if one or more 

heavy atoms in its sidechain are within 4.5 Å from the nucleobases of the DNA. On 

the other hand, a residue is regarded as involved in non-specific binding with the 

DNA, if the residue is not involved in specific binding with the DNA and one or more 

heavy atoms in its sidechain are within 4.5 Å from the sugar/phosphate backbone of 

the DNA.  

 

This article presents the design of a sequence based predictor for identifying the 

residues in a TF that are involved in specific binding with the DNA. The design of the 

proposed predictor is distinctive by employing a hybrid approach aimed at achieving 

superior performance.  In particular, two prediction mechanisms specialized to make 

predictions with different types of protein secondary structure elements have been 

incorporated. In the experiments reported in this article, the proposed hybrid predictor 

has been able to deliver overall sensitivity of 59.5%, specificity of 98.8%, precision of 

77.4%, and accuracy of 96.3%, based on the following definitions: 
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where TP, TN, FP, and FN stand for the number of true positive samples, the number 

of true negative samples, the number of false positive samples, and the number of 

false negative samples, respectively. 

Results  
Overview of the design of the proposed hybrid predictor 
Fig. 2 presents an overview of the hybrid predictor proposed in this article.  The entire 

hybrid predictor consists of the primary predictor and the auxiliary predictor.  The 

primary predictor is a support vector machine (SVM) with its parameter settings 

optimized for delivering high precision.  As a result, one can expect that sensitivity of 

the SVM-based primary predictor has been traded, since tuning the parameters of a 

predictor in order to raise precision typically means that sensitivity is traded and vice 

versa.  In particular, it has been observed in our experiments that the SVM with the 

parameter settings adopted in this article is capable of delivering reasonably well 

precision with respect to identifying the specific DNA-binding residues in α-helix and 

coil types of secondary structure elements.  On the other hand, it has also been 

observed that the SVM hardly identifies the specific DNA-binding residues in β-sheet 

elements.  Therefore, one straightforward way to improve the overall sensitivity of 

prediction is to incorporate a mechanism that can accurately identify the specific 

DNA-binding residues in β-sheet elements.  As shown in Fig. 2, in the proposed 

hybrid predictor, we have incorporated a mechanism based on secondary structure 
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element alignment (SSEA) to complement the prediction power of the SVM.  The 

hybrid predictor then merges the outputs of the primary and auxiliary predictors by 

referring to the secondary structure elements predicted by the HYPROSP II server [9]. 

In this respect, the hybrid predictor will rely on the SVM based primary predictor to 

identify the specific DNA-binding residues in a secondary structure element that 

HYPROSP II predicts to be either an α-helix or a coil. On the other hand, the hybrid 

predictor will rely on the SSEA based auxiliary predictor to identify the specific 

DNA-binding residues in a secondary structure element that HYPROSP II predicts to 

be a β-sheet. The detailed design of the proposed hybrid predictor will be elaborated 

in the section Methods. 

Performance Evaluation 
In our study, we have conducted experiments to evaluate the performance of the 

proposed hybrid predictor.  For training the hybrid predictor presented in Fig. 2, we 

have created a data set containing 228 TF-DNA complexes extracted from the 691 

protein-DNA complexes that Yanay Ofran et al. [10] collected from the protein data 

bank (PDB) [11].  In this process, we first excluded those complexes in the Ofran 

collection that do not contain a TF.  We then queried the PFAM server [12] to exclude 

those complexes in which no polypeptide segment is within the DNA binding domain 

predicted by the PFAM server.  In this respect, we submitted the full sequences of the 

proteins in the complex to the PFAM server and adopted only those predicted binding 

domains with the p-value computed by the PFAM server smaller than 0.01.  With this 

process, we excluded those complexes in which the polypeptide segments just happen 

to be in the proximity of the DNA but are not really involved in binding with the 

DNA.  It might happen that we accidently excluded some TF-DNA complexes with 

actual TF-DNA interactions.  Nevertheless, it was our intention to be conservative.  In 
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the end, 228 out of the 691 complexes initially in Ofran collection remained.  This 

collection of 228 TF-DNA complexes was then employed to generate the training data 

set and testing data set in the experiments reported in this article. 

 

The performance evaluation was conducted following the leave-one-out approach.  

Accordingly, the protein chain in each of the 228 TF-DNA complexes was used as the 

testing case once.  In order to avoid bias caused by homologous protein chains, the 

training data set for the SVM and the template library for the SSEA algorithm were 

re-generated for each testing protein chain by removing those protein chains in the 

remaining 227 TF-DNA complexes that have a sequence identity higher than 20% 

when aligned with the testing protein chain.  In our experiment, the BL2SEQ 

component of BLAST package [13] was invoked to obtain a score of sequence 

identity between two protein chains. 

 

Table 1 shows how the SVM based predictor in Fig. 2 performed in the leave-one-out 

process.  As mentioned earlier, the parameters of the SVM based predictor has been 

tuned to deliver high precision.  As a result, sensitivity was traded.  The results in 

Table 1 reveal that the SVM based predictor, to a certain extent, is capable of 

identifying the specific DNA-binding residues in α-helix and coil elements.  On the 

other hand, the SVM based predictor can hardly identify the specific DNA-binding 

residues in β-sheet elements.  Therefore, in order to raise sensitivity of prediction, we 

have resorted to the SSEA based mechanism to complement the prediction power of 

the SVM.  Table 2 shows how the SSEA based predictor performed in identifying the 

specific DNA-binding residues in β-sheet elements.  Combining the results in Tables 

1 and 2, one can easily conclude that the prediction power of the SSEA based 
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mechanism complements that of the SVM.  With the SVM based predictor and the 

SSEA based predictor integrated as shown in Fig. 2, the hybrid predictor has been 

able to deliver the performance shown in Table 3. 

 

Table 4 shows a breakdown of the experimental results with the hybrid predictor 

based on the classification of TF-DNA interactions proposed by J.M. Thornton et al. 

[14]. It should not be a surprise to observe that the hybrid predictor can deliver 

superior prediction accuracy when dealing with certain types of interactions and 

delivers inferior prediction accuracy with the other types. In this respect, what a 

biologist or chemist really cares about is whether the predictor could deliver 

extremely poor performance with certain types of interactions. The results reported in 

Table 4 show that the hybrid predictor does not suffer such kind of deficiency. 

Discussion  
In this section, we will discuss how the proposed hybrid predictor performs in 

comparison with the related works reported in recent years. In this respect, it must be 

noted that the problem definition in our study and those of the related studies are not 

exactly identical. While our study focuses on prediction of residues involved in 

specific binding with the DNA, all the related studies did not distinguish between 

specific binding and non-specific binding. Therefore, the results listed in Table 5, 

which includes the main results extracted from the related studies along with the 

overall results with the proposed hybrid predictor, should be regarded as a survey of 

the latest advances in the field. It must also be noted that most related studies have 

adopted slightly different definitions of DNA-binding residues. In the article by 

Ahmad and Sarai[1] and in the article by Wang and Brown[15], a residue is regarded 

as involved in interaction with the DNA, if one of its heavy atom is within 3.5 Å from 
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a heavy atom of the DNA. In the article by Hwang and et. al.[16], a larger threshold 

of 4.5 Å, instead of 3.5 Å, has been adopted. In the article by Yan and et. al.[2], a 

residue is regarded as involved in interaction with the DNA, if its solvent accessible 

surface area (ASA) in the protein-DNA complex is less than its ASA in the unbound 

protein by more than 1 Å2. 

 

In Table 5, the numbers listed with an asterisk have been derived from the numbers 

reported in the related studies. Since all the four related studies addressed in Table 5 

reported three out of the first four performance metrics listed in the table, for each of 

the related study, we can obtain 3 equations about the following 4 variables: 
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In addition, we have 1=+++
∧∧∧∧

FNTNFPTP . Therefore, for each related study, we can 

derive the actual values of the fourth performance metrics based on the values of the 

three performance metrics provided. The only exception is the case for the predictor 

proposed by Hwang and et. al.[16]. It can be easily shown in mathematics that 

accuracy cannot be higher than sensitivity and specificity simultaneously, which is the 

case with the numbers reported by Hwang and et. al. Therefore, there is no way to 

derive the exact values of the other performance metrics for their predictor. 

 

The numbers reported in Table 5 reveal that in comparison with the related works the 

proposed hybrid predictor is capable of delivering superior performance in terms of 

the harmonic mean of precision and sensitivity (F-score), which is a widely used 

performance metric in machine learning research. Furthermore, the proposed hybrid 
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predictor is capable of delivering much higher precision than the other predictors. We 

emphasize precision because it provides the biochemist with a confidence level for 

designing an experiment to confirm whether a predicted binding residue is really 

involved in interaction with the DNA. With the proposed hybrid predictor, the 

biochemist can expect that on the average three out of the four predicted binding 

residues are really involved in specific binding with the DNA. On the other hand, the 

proposed hybrid predictor, on the average, can catch about 6 out of 10 specific 

binding residues. 

Conclusions  
This article presents the design of a sequence based predictor aimed at identifying the 

specific DNA-binding residues in a TF. As a recent study has revealed that the tertiary 

structures of a large number of transcription factors are mostly disordered, a sequence 

based predictor is essential for analyzing how a highly-disordered TF interacts with 

the DNA. Furthermore, as specific binding corresponds to sequence-specific 

recognition of a gene and is essential for correct gene regulation, the capability to 

identify those residues involved in specific binding with the DNA is of particular 

interest. 

 

In the experiments reported in this article, the proposed hybrid predictor delivered 

overall precision of 77.4%, sensitivity of 59.5%, specificity of 98.8%, and accuracy of 

96.3%. Precision of 77.4% implies that about 3 out of 4 predicted binding residues are 

really involved in specific binding with the DNA. On the other hand, sensitivity of 

59.5% implies that the predictor can catch about 6 out of 10 residues involved in 

specific binding with the DNA. The experimental results further show that the 
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proposed hybrid predictor is capable of delivering the same level of prediction 

accuracy when dealing with different types of TF-DNA interactions.  

 

It is anticipated the prediction accuracy delivered by the hybrid predictor will 

continue to improve as the number of TF-DNA complexes deposited in the PDB 

continues to grow and leads to continuous increase of the number of training samples 

that can be exploited. Nevertheless, it is computational biologists’ primary interest to 

develop more advanced prediction mechanisms. In this respect, we believe that, as the 

number of TF-DNA complexes deposited in the PDB increases, we can obtain more 

insights about the key physiochemical properties that play essential roles in TF-DNA 

interactions and then we will be able to develop more advanced prediction 

mechanisms accordingly. 

Methods 
As shown in Fig. 2, the hybrid predictor proposed in this article consists of the 

primary predictor and the auxiliary predictor.  This section elaborates the design of 

the primary and auxiliary predictor. 

Design of the Primary predictor 
For the design of the primary predictor, we have employed the LIBSVM package [17] 

with the Gaussian kernel. The model of the SVM has been generated based on a 

training data set derived from the 228 TF-DNA complexes described above.  The 

training data set was generated by associating each residue in the 228 protein chains 

with a position specific scoring matrix (PSSM) computed by the PSI-BLAST package 

with window size set to 11 [5].  In addition, each residue was labeled based on 

whether it is involved in specific binding with the DNA or not.  As mentioned earlier, 

a residue is regarded as involved in specific binding with the DNA, if one or more 
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heavy atoms in its sidechain are within 4.5Å from the nucleobases of the DNA. The 

end result was a training data set containing a total of 22097 samples, of which 1416 

samples are positive and 20751 samples are negative. 

As mentioned earlier, the parameters of the SVM have been set to deliver high 

precision.  In this respect, we have set parameters C and g with the Gaussian kernel to 

32 and 0.03125, respectively. 

Design of the auxiliary predictor 
As mentioned earlier, the auxiliary predictor incorporates a mechanism based on 

secondary structure element alignment (SSEA), which was firstly proposed by 

Gewehr and Zimmer [18].  The SSEA based mechanism refers to a template library 

containing the sequences of specific DNA binding domains.  The template library has 

been created with the following steps: 

1. Each protein chain in the 228 TF-DNA complexes was submitted to the 

HYPROSP II server as well as to the PFAM server.  Then, each residue in the 

predicted β-sheet elements was examined to determine whether it is involved in 

specific binding with the DNA.  If a β-sheet element contains one or more 

residues involved in specific binding with the DNA, then the β-sheet element 

was regarded as involved in specific binding with the DNA. 

2. If a DNA binding domain output by the PFAM server contained one or more β-

sheet elements involved in specific binding with DNA, then the binding domain 

was deposited into the template library.  In addition, each residue in the domain 

was labeled by the HYPROSP II with one of the following three types: α-helix, 

β-sheet, and coil. 

With the template library, we then can invoke the following procedure to predict the 

specific DNA-binding residues in the β-sheet elements of the query TF.   
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1. Invoke the HYPROSP II server to label each residue in the query TF with one of 

following three types: α-helix, β-sheet, and coil. 

2. Invoke the BLAST package [19] to align the sequence of labels of the query TF 

with the sequence of labels of each template in the library.  The similarity score 

between the query TF and a template is then computed as follows. 

( ) ( ) ( ) ( )[ ]{ },,exp∑∑∑
i j k

iiii kjSkj βαλβα  

where 

(i) i is the index of the aligned residue pairs; 

(ii) αi(j) and βi(k) are the PSSM vectors corresponding to the aligned residue 

pair with index i; 

(iii) S[αi(j), βi(k)] is the score of BLOSUM62 corresponding to residue pair αi(j) 

and βi(k); 

(iv) is a parameter and has been set to 0.347. 

The positions of the specific DNA-binding residues in the 5 templates that give the 

highest similarity scores are then superimposed to predict the positions of the specific 

DNA-binding residues in the query TF. 
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Figures 
Figure 1  - An example of protein-DNA interaction. This complex is with PDB ID 
1YSA and contains Yeast TF GCN4.  
The atoms colored by red are the heavy atoms in the sidechains of the specific 
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DNA-binding residues. The atoms colored by light blue are the heavy atoms in 
the side-chains of the non-specific DNA-binding residues. 

 

Figure 2  - The overall structure of the proposed hybrid predictor. 

 

 

Tables 
Table 1  - Prediction results with the SVM based primary predictor. 
Type of the secondary 
structure element 

# in residues 
tested 

Prediction results 
TP TN FP FN Precision Sensitivity Specificity Accuracy

Helix 12781 573 11670 156 382 0.786 0.600 0.987 0.958
Sheet 1465 0 1358 3 104 0.000 0.000 0.998 0.927
Coil 7921 186 7506 58 171 0.762 0.521 0.992 0.971
 

Table 2  - Prediction results with the SSEA based auxiliary predictor. 
Type of the secondary 
structure element 

# in residues 
tested 

Prediction results 
TP TN FP FN Precision Sensitivity Specificity Accuracy

Sheet 1465 83 1329 32 21 0.722 0.798 0.976 0.964
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Table 3  - Prediction results with the hybrid predictor. 
Type of the 
secondary structure 
element 

# in residues 
tested 

Prediction results 
TP TN FP FN Precision Sensitivity Specificity Accuracy

Helix 12781 573 11670 156 382 0.786 0.600 0.987 0.958
Sheet 1465 83 1329 32 21 0.722 0.798 0.976 0.964
Coil 7921 186 7506 58 171 0.762 0.521 0.992 0.971
Overall 22167 842 20505 246 574 0.774 0.595 0.988 0.963
 

Table 4  - Breakdown of the experimental results with the hybrid predictor in 
respect of different types of TF-DNA bindings 
Type of  TF-
DNA bindings 

# of TFs 
involved

# in 
residues 
tested 

Prediction results 
TP TN FP FN Precision Sensitivity Specificity Accuracy

Zipper-type 44 3109 213 2821 30 45 0.877 0.826 0.989 0.976
Helix-turn-
helix 

97 12480 316 11712 123 329 0.720 0.490 0.990 0.964

Zinc-
coordinating 

57 4792 230 4332 74 156 0.757 0.596 0.983 0.952

β-
hairpin/ribbon 

30 1786 83 1640 19 44 0.814 0.654 0.989 0.965

Overall 228 22167 842 20505 246 574 0.774 0.595 0.988 0.963
 

Table 5  - Performance delivered by alternative predictors of DNA-binding 
residues, where the F-score is the harmonic mean of precision and sensitivity. 

Predictor Sensitivity Specificity Accuracy Precision F-score 
The proposed hybrid predictor 0.595 0.988 0.963 0.774   0.671   
Ahmad and Sarai[1] 0.682 0.660 0.664 0.308* 0.425* 
Yan and et. al.[2] 0.410 0.871 0.780 0.439* 0.424* 
BindN (Wang and Brown[15]) 0.652 0.728 0.722 0.186* 0.289* 
DP-Bind (Hwang and et. al.[16]) 0.791 0.786 0.800 –* –* 

 


