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ABSTRACT:  Using the self-consistent field theory, 
we study the lamellar, the hexagonal, and the micellar 
phases of the AnBm miktoarm star copolymer with added 
solvent. We present an algorithm for the SCFT of block 
copolymers within a specific class of multiple arms chain 
architecture, and solve the partition function of the 
polymer chain in the reciprocal space. By changing the 
arm number of the solvophilic part B of the polymer, we 
calculate the common mesophases of A1Bm star 
copolymers for several m. We construct numerically the 
phase diagrams in weak solvent selectivity and try to 
locate the detailed phase boundary between the three 
mesophases. The microstructures of the star copolymers 
are affected by the polymer architecture and the solvent 
concentration. Because of the highly asymmetric 
structure for the A1B3 and the A1B5 star copolymers, 
these star copolymers do not favor the formation of the 
lamellar phase. We also found that within the same 
polymer chain composition, the solubility of copolymers 
increases as the solvophilic arm number increases. 
Keywords:  SCFT, star copolymer, polymeric solution, 
                     phase diagram 
 
Introduction 
 
     Over the last few decades, lyotropic polymers have 
been widely used in personal care products, drug delivery, 
and other applications[1]. The industry also needs the 
more water-soluble polymers to save the cost of organic 
solvents and the reaction times. Because of the addition 
of solvents, there are more interaction factors between 
solvents and copolymers. Various micro-structures have 
been found. Lyotropic copolymers have become new 
approaches for preparing nano-materials with delicate, 
accessible self-assembled morphologies[2]. The 
amphiphilic property of Lyotropic copolymers is very 
similar to surfactants’. However, the chain length of the 
polymers could be hundred times more than the 
surfactants. So that it is much easier to develop the self-
consistent field theory (SCFT) to calculate the copolymer 
phase diagram than the surfactants. In this paper, SCFT 
is employed to analyze the phase behavior of lyotropic 
star copolymers in the systems with weak solvent 
selectivity. 
 
Theoretical Method 
 
    We extend the recent SCFT scheme of Matsen and 
Schick[3], which was developed to study the polymer 
phase behavior of melts, to solve the partition function 
by the spectral method. The solvent molecules are 
included by the method of Huang[4], where the 
distribution of solvent molecules is simply related to the 
solvent potential field wS

through the Boltzmann factor. 
We consider the co-polymer with n-arms of A-blocks 
jointed with m-arms of B-blocks at one junction point. 
We call such copolymer AnBm star copolymer. Each 

copolymer is composed of N segments, and the A-
monomer fraction f. The architecture is shown in Fig. 1.  
     We assume the same Kuhn length a for both the A- 
and B-monomers. The total volume of the system is fixed 
to V. The volume fraction of the copolymer is .!  The 
volume fraction of solvent is (1 ).!"  The potential fields 
are contributed from the densities of A, B, and the 
solvent S through the Flory-Huggins parameter ,IJ!  
where I and J are the labels of species. The !  here is the 
Lagrange multipliers for the volume constraint. 
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The total system volume is constrained, so that 
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For an AnBm architecture, we define the forward and 
reverse end-segment distribution functions, q(r, s)  and 

† ( ),q sr,  respectively. The forward end-segment distri-
bution function q(r, s)  is proportional to the probability 
that one chain with  sN  segments “diffuses” from one of 
the beginning of A-arm to the position r. q † (r, s)  has the 
similar definition as q(r, s)  but diffuses from one of the 
ends of B-arm to the position r at the counting length 
parameter s. The end-segment distribution functions  q  

and 
  q

†  are related to the linear chain propagator G  
under the potential field ( , ).w sr  The expression of G is 
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where the path integral is carried out over all paths of the 
chain from the position r

i
 at the counting length 

parameter s
i
 to the position rf  at .fs  !  is equal to 1 

when s is located in the A side and 0 otherwise. All paths 
from s

i
 to s f  are weighted by the normal distribution 

function [ ; , ].i fP s s
!
r  

     We summarize the above definition by writing 
q(r, s)  in terms of the single chain propagator 
( , ; , ),i i f fG s sr r  
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The boundary conditions for q(r, s)  at its free end 
s
0
= 0  and the junction point s

1
 are 



   
q(r,0) = 1                                       (5) 
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where q(r, s
1

+
)  is the limit of the function just after the  

junction point at the B-part. 
    Using the definition mentioned above, we also have 
the expression of † ( ),q sr,  
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The boundary conditions for q† (r, s)  at its free end s

2
 

and the junction point s
1

 are 
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    We’ve already known that the end-segment 
distribution function would satisfy the modified diffusion 
equation[5]. Namely, 

   

!q

!s
"

1

6
Na

2#2
q $ w

A
(r)q , for  0 < s < s

1

1

6
Na

2#2
q $ w

B
(r)q ,  for  s

1
< s < s

2

%

&
''

(
'
'

           (10) 

    

!
"q

†

"s
#

Na
2

6
$2

q
† ! w

A
(r)q†, for  0 < s < s

1

Na
2

6
$2

q
† ! w

B
(r)q†, for  s

1
< s < s

2
 .

%

&

'
'

(

'
'

       (11) 

We should first solve the partition function at single 
chain parts, that is, q(r, s) at 

  
0 < s < s

1
 and 

   
q

† (r,s)  

at
  
s
1
< s < s

2
, and then use these solutions to determine 

the boundary conditions expressed at Eq. (6) and (9). 
Once the value of q(r, s)  is known for all s  up to s2 , 
the partition function for the single-copolymer can be 
evaluated by 

   
Q

C
= drq(r,s

2
)! ,                           (12) 

where all the possible positions of B-ends have been 
summed.  
    The solvent molecule distribution is simply related to 
the solvent potential field 
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S
 via the Boltzmann 

distribution. The partition function of solvent is 
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For convenience, here we also define an end-segment 
distribution function for the solvent molecule, ( , ),Sq sr  
which satisfies 
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with the initial condition ( , 0) 1.= =Sq sr  The partition 
function of the solvent molecule can be expressed by 
( , ),Sq sr  
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    The monomer distribution functions can be computed 
by the end-segment distribution functions, 

1

2

1

0
( )  ( , ) ( , )  

( )  ( , ) ( , )   

(1 ) ( )
( ) exp   .

!
!

!
!

!
!

=

=

" "# $
= % &' (

)

)

s

A

C

s

B
s

C

S
S

S

n
ds q s q s

Q

m
ds q s q s

Q

w

Q N

r r r

r r r

r
r

†

†         (16) 

Now the potential fields can be calculated from the 
monomer distribution functions by Eq. (1) and (2). This 
completes the cycle of self-consistent equation. The free 
energy for one copolymer chain can be expressed by 
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The phase diagram can be drawn by compared the free 
energy between the ordered and disordered phases. 
 
Results and Discussion 
 
We compute the free energy for three kinds of 
copolymers, that is, A1B1, A1B3 and A1B5, to study the 
effect of copolymer architectures. The system conditions 
here are all set with 200,  0.4,N f= = 0.7,

AS
! =  

0.4,
BS

! = 40.
AB
N! = The phase diagrams for these 

copolymers are depicted in Fig. 2. The result of A1B1 
phase diagram (Fig. 2.a) is in agreement with our 
expectation. A sequence lamellar (L) → hexagonally-
packed A-formed cylinder (CA) → A-formed micelle 
(MCA) →disorder (D) is observed as copolymer volume 
fraction 

 
!

C
 decreases. The values of 

 
!

C
 at boundaries 

between L/CA, CA/MCA, and MCA/D, are equal to 0.53, 
0.28, 0.15, respectively. The qualitative behavior is 
consistent with the result of Huang[4]. The A1B3 and 
A1B5 phase diagrams (Fig. 2.b and 2.c) show the 
different phase behavior compared to the one of A1B1. 
The phase sequences for the A1B3 and A1B5 are the same 
as hexagonally-packed A-formed cylinder (CA) → A-
formed micelle (MCA) →disorder (D) when 

 
!

C
 

decreases. The phase boundaries shift more to the right 
side as the copolymer arm number increases. Now we 
examine the free energy of different phases in more 
detail. The free energy for the A1B3 and A1B5 
copolymers at different phases were depicted in Fig. 3 
and 4, respectively. From comparing the free energy 
between different phases, we find that both the A1B3 and 
the A1B5 copolymers do not favor the formation of 
lamellar phases. The loss of the lamellar stability is 
caused by the highly asymmetric architectures for the 
AB3 and AB5 star copolymers. The highly asymmetric 
architectures are caused by two reasons. One is that the 
intrinsic structure caused by the different arm numbers 
between the A- and B-sides. The other reason is the 
larger solvation for the B-side. The solvation for the B-
side leads to that the AB3 and AB5 have a larger B-head 
cross-section as the solvent is absorbed. The B-head 
swells more for the AB5 star copolymer than that of the 
AB3 star copolymer. The highly asymmetry of the 
solvation structure leads that the phase transition of 
cylinder to micelle happens earlier in the AB5 
copolymers than that of AB3. From the melting 
concentrations of different copolymers and phases shown 



Fig. 1.  A schematic diagram of the AnBm star co-
polymer. The solvophobic A-block contains fN/n 
segments for each arm. The other solvophilic B-block 
contains (1-f )N/m segments for each arm. All A-arms 
are identical, and so are B-arms. We assume the same 
Kuhn length for both the A- and B-monomers. s is a 
counting length parameter. At the junction point, s = 
s1 = fN/n, at the A-start, s = s0 = 0 , and at the B-end, s 
= s2 = fN/n+(1-f )N/m. 
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at Table 1, we observe that all mesostructures of AB5 
copolymers melt in the highest copolymer concentration 
in comparison with AB1 and AB3. The solubility of the 
copolymers increases as the solvophilic arm number 
increases. This trend is also reported from the 
experiment[6] and the simulation study[7]. 
 
Conclusion 
 
We use the SCFT calculation to analyze the phase 
behavior of A1Bm star copolymers. We study three 
mesophases, that is, the lamellar, the hexagonal-packed 
cylinder, and the micelle, with three kinds of copolymers. 
From comparing the free energy at different phases, we 
construct the phase diagram and find that the A1B3 and 
A1B5 copolymers do not favor the formation of lamellar 
phase. This is caused by the highly asymmetry for the 
A1B3 and A1B5 copolymers. The highly asymmetry is 
originated from the intrinsic architecture of copolymers 
and the larger solvation ability of the B-parts. 
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                Mesostructure 
Copolymer 

Micellae 
!
c,melt

 
Cylinder 
!
c,melt

 
Lamellae 
!
c,melt

 

A1B1 0.15 0.20 0.20 

A1B3 0.20 0.25 0.30 
A1B5 0.25 0.25 0.35 

 
Table 1. The melting concentrations of the different 
mesostructures for different A1Bm star copolymers. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.  The phase diagram of (a) A1B1, (b) A1B3, (c) 
A1B5 copolymers in weak selective solvent with f = 0.4, 
N = 200, a=0.1, 

 
!

AB
N = 40, 

  
!

AS
= 0.7 ,

  
!

BS
= 0.4 . D, 

MCA, CA, and L denote the disorder, A-formed micelle, 
A-formed hexagonal packed cylinder, and lamellar phase, 
respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.  The rescaled free energy of A1B3 for three 
ordered phases.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.  The rescaled free energy of A1B5 for three 
ordered phases. 
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