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Abstract

This article documents both modeling and experimental studies developed to investigate the switching behavior of

ferroelectric single crystals. The theoretical model makes a priori ansatz that switching follows the evolution of a particular

domain pattern. The choice of this configuration is dictated by the requirement that domains remain compatible during

evolution, giving rise to a low-energy path for the overall switching. The construction of this pattern is achieved using

multirank laminates. It offers an advantage of specifying different types of domain wall movements, leading to a

distinction for the switching types. A loading experiment is performed on a barium titanate (BaTiO3) single crystal with a

constant compressive stress and a cyclic electric field. Both 180� and 90� coercive fields are measured as input parameters

required for the theoretical framework. The simulation results show good agreement with the observed strains measured by

the present and other available experiments. It is found that depolarization has a non-trivial influence on attainable

actuation strains.

r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Ferroelectric materials exhibit highly characteristic electromechanical coupling with the ability to switch
polarization in response to an external electric field or mechanical load. They are piezoelectric under poling
and are often used in various actuator and sensor applications due to high-frequency response and low
hysteresis (Uchino, 1998; Shieh et al., 2001; Bhattacharya and Ravichandran, 2003). However, the strains that
they display under piezoelectric response are typically small. This motivates numerous experimental efforts
using ferroelectric single crystals to obtain large actuation strains. It can be achieved either by enhancing their
intrinsic contribution through composition control and material development (Park and Shrout, 1997), or by
using their extrinsic contribution through domain switching (Burcsu et al., 2000, 2004; Ren, 2004; Cao, 2005).
e front matter r 2008 Elsevier Ltd. All rights reserved.
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This article focuses on the latter approach and combines both modeling and experimental studies aiming at
understanding the fundamental process of ferroelectric switching in single crystals.

Ferroelectric crystals are phase-transforming materials. There exists a critical temperature, called the Curie
temperature, such that above this temperature they are paraelectric with non-polar structures. However, on
cooling below the Curie point, the unit cell is spontaneously polarized with a spontaneous lattice distortion. In
this state, the crystals are both piezoelectric and ferroelectric where the piezoelectric behavior exhibits along
the spontaneous polarization direction. Another feature of this transformation is that there is a reduction in
crystallographic symmetry, and this creates more than one symmetry-related polarized state. Each of them is
equally favorable in the absence of external field and load. These preferred states, which are characterized by
pairs of spontaneous strain and polarization, are commonly called the ferroelectric variants. Very often, a
mixture of variants rather than a single variant coexists in these materials; and multiple domains, each of
which is a region of uniform spontaneous strain and polarization, are observed with scales ranging from few to
hundreds of nanometers. Adjacent domains are separated by a domain wall which has a well-defined
crystallographic orientation. As a result, domains form highly intricate and characteristic patterns in
ferroelectric materials (Arlt and Sasko, 1980; Wada et al., 1999; Ricote et al., 2000). Besides, the type of a
domain wall is determined by the angle between the polarizations on the two sides of the wall, leading to 180�

and non-180� walls.
Domains can be switched from one variant to another under an electric field or stress since the variants have

equal energy. While the energy barrier for the homogeneous switching of two different variants is high, the
switching can start with a nucleation of the domain wall and proceeds by the propagation of wall (Little, 1955;
Loge and Suo, 1996; Hong et al., 1999). As a domain wall sweeps through a crystal, one domain expands at
the expense of the other, leading to the conversion of one domain type to another. Traditionally switchings are
classified according to the types of walls. A 180� switching reverses polarization only and has no effect on
shape change since variants on the two sides of a 180� wall have an identical crystal orientation. However, a
non-180� switching is accompanied with a significant change in shape due to different crystallographic
orientations. Both switchings can be driven by suitable electric fields, but stress can only induce a non-180�

domain switching. Combining all these features suggests that a large actuation strain can be achieved through
non-180� domain switching under a suitable electromechanical loading.

The key behind this idea is that walls separating different variants cannot be arbitrary; instead, they have
well-defined crystallographic orientations as mentioned above. A wall with different strains and polarizations
on its two sides must be oriented in a particular way to remain connected and uncharged. In other words, its
orientation is determined to guarantee that strain and polarization are compatible across the wall. Violation of
this rule results in additional stress and depolarization field, and hence, increasing the energy of the material.
Thus, it suggests that compatible domain walls provide a low-energy path for domain switching, and the
understanding of them leads to novel strategies of large strain actuation. Indeed, Shu and Bhattacharya (2001)
have adopted an energetic argument to systematically exploit various types of walls for polarized tetragonal,
rhombohedral and orthorhomibic ferroelectric crystals. Following their analysis, Burcsu et al. (2004) have
employed a combined electromechanical loading to induce 90� switching in BaTiO3 single crystals, and a
strain of 0.8% is measured at 1.78MPa compressive stress together with a moderate cyclic electric field.
While this level of strain is several times larger than that induced by piezoelectric response, it is smaller
than the theoretical maximum 1.09% for BaTiO3 single crystals (Shu and Bhattacharya, 2001). Further,
although measured with an entirely different loading setup to the previous one, a significant strain
reduction to 0.45% is also observed in the present study (see Section 3 for a complete description). Various
reasons are proposed; the common interpretation for the strain reduction is due to coercive hardening
introduced in many phenomenological switching models (Kamlah and Tsakmakis, 1999; McMeeking and
Landis, 2002; Landis, 2002). Recently, Shilo et al. (2007) have proposed another mechanism to explain it.
They have assumed the existence of friction between the ferroelectric crystal and the mechanical loading
device of Burcsu et al.’s experiment, showing that the strain is reduced due to this factor. As the hardening in
coercive fields is typically small for single crystals (Cao, 2005) and the present experiment is conducted in an
oil bath, the effects of coercive hardening and friction could be negligible in the current case. Therefore, other
possible mechanisms causing the strain reduction on switching need to be burrowed out and are investigated in
this article.
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On modeling the nonlinear switching behavior of ferroelectric materials, various frameworks based on
continuum descriptions have been proposed. They can be grouped into three major categories: phase-field
models (Chen, 2002; Zhang and Bhattacharya 2005a, b; Dayal and Bhattacharya, 2007; Shu and Yen, 2007;
Shu et al., 2008), phenomenological constitutive models (Bassiouny et al., 1988a, b; Kamlah, 2001; Landis,
2004) and micromechanical constitutive models (Hwang et al., 1995; Lu et al., 1999; Kessler and Balke, 2001;
Huber et al., 1999; Huber, 2005). The phase-field approaches typically are computationally expensive and
impractical for applications, and the phenomenological models are usually established to describe the
ferroelectric switching in polycrystals based on a reduced set of fitting parameters. Both are beneficial in
different concerns, but may not be suitable to describe the switching behavior of single crystals. Instead,
micromechanical models are developed directly with the description of domain switching at the crystal lattice
scale as the motivation. They differ in the way of specifying switching criterions (Sun and Achuthan, 2004;
Zhang et al., 2006). Many of them start with the constitutive construction in the level of a single crystal, and
model the polycrystalline behavior by appropriate averaging of the grain responses using either the
Reuss approximation (Hwang et al., 1995; Lu et al., 1999), the self-consistent average scheme (Chen et al.,
1997; Huber et al., 1999; Landis and McMeeking, 2001), or the finite element method (Fotinich and
Carman, 2000; Kim and Jiang, 2002; Kamlah et al., 2005). However, early works of this approach have
treated the single crystal behavior in an oversimplified manner by assuming domain switching is a
sudden change from one variant to another (Hwang et al., 1995; Chen et al., 1997; Michelitsch and Kreher,
1998). A significant improvement is made by Huber et al. (1999) who introduce the incremental switching in
analogous to the operation of a slip system in crystal plasticity. It includes a kinematic description of the
remanent strain and remanent polarization, a switching criterion, and a hardening law for single crystals.
Experimental verifications of this model have been provided by Huber and Fleck (2001) and Shieh et al.
(2003). Other modified micromechanical models for ferroelectric single crystals include the work by Elhadrouz
et al. (2005) who introduce an interface operator to account for interaction energy, and the work by Liu and
Lynch (2003) who investigate relaxor crystals poled along different crystallographic directions. Finally,
Seelecke et al. (2005) and Kim and Seelecke (2007) have proposed different frameworks for switching in
ferroelectric single crystals. They generalize the one-dimensional free energy model by Smith et al. (2005) to
two- and three-dimensional cases based on the theory of thermally activated processes and statistical
thermodynamics.

The present approach is motivated by several recent works such as Li and Weng (2002, 2004), Rödel and
Kreher (2000, 2003), Fulton and Gao (2001) and Landis and McMeeking (2001). Different from most of
switching models in the literature, they include geometric arrangements of domains within either single
crystals or individual grains, and typically lamellar domains are assumed in their models. Nevertheless, only a
subset of all possible variants is taken into account and some of the domain arrangements may not be
compatible structures. This calls for a detailed analysis of microstructural evolution and the relevant coupling
effects. Indeed, the switching model proposed here assumes that switching is enabled by the evolution of a
particular domain pattern. The choice of this domain configuration is motivated by the fact that it is consistent
with the applied boundary conditions in the sense that it accommodates the overall prescribed strain and
polarization, and that it minimizes the energy including the non-local electrostatic contribution. The
construction of this domain pattern is achieved using multirank laminates (Li and Liu, 2004). As a result,
domains remain compatible during evolution and the different types of domain wall movements can be
specified explicitly. The former guarantees that the overall switching follows a low-energy path, and the latter
distinguishes the switching types such as 180� and 90� switchings for tetragonal ferroelectric crystals. Another
feature of the proposed framework is that the depolarization energy arising from the local polarizations in the
crystal is taken into account. This effect is often neglected in numerous switching models, while it may be
important to explain switching hardening in strain and certain abnormal behavior observed in recent
experiments on BaTiO3 single crystals. The former has been briefly examined by Shu et al. (2007) and the latter
has been reported and discussed by Shieh et al. (2007).

This article starts with a description of electroelastic potential energy of a ferroelectric crystal proposed by
Shu and Bhattacharya (2001) in Section 2. Common lamellar and banded patterns are illustrated and are
extended to electromechanically compatible multirank laminates. Driving forces are derived by the reduction
of potential energy, and dissipations are determined in terms of different kinds of domain wall movements.
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With the balance of these two forces, the switching problem is investigated in the case of flat-plate
configuration and extended to other cases with complicated configurations. Section 2 is ended with an
interesting comparison between the present and Huber et al.’s switching models at the level of single crystals
(Huber et al., 1999). Substantial differences between these two are found in the kinematic descriptions of
switching variants and in the expressions of driving and resistance forces. After that, an experiment to
investigate the electrostrictive behavior of a BaTiO3 single crystal under the flat-plate configuration is
described in Section 3. Both 180� and 90� coercive fields are measured as input parameters required for the
theoretical framework. The simulation results taking into account the depolarization effect are offered in
Section 4. They are compared to the observed strains measured by the present and Burcsu et al.’s experiments
(Burcsu et al., 2004). Finally, conclusions are drawn in Section 5.

2. Framework

2.1. Electroelastic energy of a ferroelectric single crystal

Consider a ferroelectric single crystal occupying the region O at a fixed temperature. The state variables
describing the electromechanical behavior of it are displacement u and polarization p. As the relative changes
of spontaneous distortion from the paraelectric to ferroelectric state are typically around the order of 10�3 for
most perovskite ferroelectrics, the linearized symmetric strain is assumed here. It is denoted by e and is related
with displacement by e½u� ¼ 1

2
fruþ ðruÞTg.

Suppose the crystal is under a combined electromechanical loading. Let E� be the applied electric field
generated in the absence of ferroelectric crystal, and r� be the symmetric stress induced owing to the applied
traction on part of its boundary. Notice that r� has to be divergence-free in the absence of body forces and to
be consistent with the mechanical boundary conditions (Shu et al., 2004). Shu and Bhattacharya (2001) have
proposed that the state variables u and p of a ferroelectric crystal can be obtained by minimizing its
electroelastic energy given by

Iðu; pÞ ¼

Z
O
fW ðe½u�; pÞ � E� � p� r� � e½u�gdxþ

�0
2

Z
R3
jrfj2 dx, (1)

where W is the stored energy density of the crystal depending on strain and polarization, �0 ¼ 8:85�
10�12 C2 N�1 m�2 is the permittivity of free space, and the electric potential f is obtained by solving the
Maxwell’s equation

r � ð��0rfþ pwOÞ ¼ rf on R3 (2)

subject to some appropriate electrical boundary conditions. The domain wall energy in Eq. (1) is
neglected due to the consideration of a bulk specimen (DeSimone, 1993). Further, in Eq. (2), rf is
the free charge density and wO is the characteristic function of O such that wOðxÞ ¼ 1 if x 2 O and wOðxÞ ¼ 0
otherwise.

The physical interpretation of each term in Eq. (1) is given here. The first term, the stored energy density,
accounts for the energetic cost that the crystal must pay if the strain and polarization deviate from the
preferred states. Thus it contains the information that the crystal prefers certain spontaneous strain and
spontaneous polarization. The second and the third terms are the potential energies due to the applied electric
field and the mechanical load, and thus, this enforces the desire of the vectorial direction of polarization as
well as the tensorial direction of strain to align with the applied field and load. The second integral in Eq. (1),
called the depolarization energy, is the electrostatic self-energy associated with the electric field generated by
the spontaneous polarization of the crystal itself.

The properties of the stored energy density W ðe; pÞ must reflect the fact that the reduction in crystal
symmetry from the paraelectric to ferroelectric phase implies that the ferroelectric crystal has several
ground states (variants) in the strain-polarization space. Indeed, below the Curie temperature the crystal is
spontaneously polarized with a spontaneous strain. Let N be the total number of variants denoted by ðeðiÞ; pðiÞÞ
for i ¼ 1; 2; . . . ;N. They correspond to the energetic ground states of W ðe; pÞ such that at any position
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Fig. 1. Schematic of the six tetragonal ferroelectric variants ðeðiÞ; pðiÞÞ. The crystal and reference bases are assumed to coincide together,

and each arrow represents the direction of polarization.
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vector x 2 O

W ðeðxÞ; pðxÞÞ
¼ 0 if ðeðxÞ; pðxÞÞ 2Z ¼

SN
i¼1

fðeðiÞ; pðiÞÞg:

40 otherwise:

8><
>: (3)

For ferroelectric single crystals in the tetragonal phase, N ¼ 6, and the six variants can be expressed by

eð1Þ ¼ ðZ1 � Z2Þe1 � e1 þ Z2I; pð1Þ ¼ Pse1;

eð2Þ ¼ ðZ1 � Z2Þe1 � e1 þ Z2I; pð2Þ ¼ �Pse1;

eð3Þ ¼ ðZ1 � Z2Þe2 � e2 þ Z2I; pð3Þ ¼ Pse2;

eð4Þ ¼ ðZ1 � Z2Þe2 � e2 þ Z2I; pð4Þ ¼ �Pse2;

eð5Þ ¼ ðZ1 � Z2Þe3 � e3 þ Z2I; pð5Þ ¼ Pse3;

eð6Þ ¼ ðZ1 � Z2Þe3 � e3 þ Z2I; pð6Þ ¼ �Pse3;

(4)

where Z1 and Z2 are measured parameters for spontaneous strain, Ps for spontaneous polarization, and
e1 ¼ ð1; 0; 0Þ, e2 ¼ ð0; 1; 0Þ, e3 ¼ ð0; 0; 1Þ. Above a� b is the tensor product of two vectors a and b. The
schematic view of these six tetragonal variants ðeðiÞ; pðiÞÞ are depicted in Fig. 1. Other cases such as
rhombohedral (N ¼ 8) and orthorhombic (N ¼ 12) ferroelectric variants can be found in the work by Shu and
Bhattacharya (2001) for details.
2.2. Multirank laminated domain patterns

The multiwell structure of the stored energy density W in Eq. (3) gives rise to minimizers or domains on
which strain and polarization are approximately constant and close to one of the ground states. To see it,
consider a ferroelectric single crystal in the absence of external field and loading; i.e., E� ¼ 0 and r� ¼ 0 in
Eq. (1). The remaining terms in Eq. (1) are non-negative, and therefore, energy is minimized if each term is
minimized individually. According to Eq. (3), the stored energy density W is minimized if at each point x 2 O
ðeðxÞ; pðxÞÞ 2Z. Next, minimizing the depolarization energy requires that the depolarization field is zero, and
this in turn requires p to be divergence-free: r � pðxÞ ¼ 0 on R3. The most obvious solutions satisfying these
two requirements simultaneously are piecewise constant solutions; i.e., mixtures of ferroelectric variants
separated by walls. However, these walls cannot be arbitrary since the jumps of strain and polarization across
the interface are restricted to those that can maintain the interface unbroken and uncharged. To be precise,
let n be the unit vector normal to an interface separating regions occupied by variants ðeðiÞ; pðiÞÞ and
ðeðjÞ; pðjÞÞ, respectively. The mechanical and electrical compatibility conditions across the interface are given by
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(Shu and Bhattacharya, 2001)

eðiÞ � eðjÞ ¼ 1
2ða� nþ n� aÞ, (5)

ðpðiÞ � pðjÞÞ � n ¼ 0 (6)

for some vector a. These two compatibility conditions ensure that the underlying distortion and the normal
component of polarization vector are continuous across the interface. Violating these conditions will give rise
to additional elastic and depolarization energies.

If both Eqs. (5) and (6) are satisfied, a laminated domain pattern can be formed with overall strain and
polarization given by

hei ¼ meðiÞ þ ð1� mÞeðjÞ; hpi ¼ mpðiÞ þ ð1� mÞpðjÞ, (7)

where h� � �i denotes the volume average and 0pmp1 is the volume fraction of the ith variant. If more than two
variants coexist in a crystal, domains form highly characteristic and complicated patterns. While there are
various candidates for domain patterns, an important one is a multirank laminate observed often in
experiments. For example, rank-one lamellar and rank-two banded domains are commonly observed patterns
in BaTiO3 (Arlt and Sasko, 1980; Wada et al., 1999). Further, it has been shown that, given any arbitrary
average states of strain and polarization, a minimum energy configuration of domains which accommodate
these prescribed averages can be constructed through multirank lamination (Li and Liu, 2004). Therefore,
compatible multirank laminated domain patterns provide a low-energy path for domain switching, and the
understanding of them leads to novel strategies of large strain actuation. In the following, an example of
multirank laminates is investigated and will be used for illustrating the switching process.

Consider a ferroelectric crystal in the tetragonal phase with four coexisting variants (1), (2), (5) and (6),
according to the labeling of Eq. (4). Fig. 2(a) shows a rank-3 laminate consisting of alternating sublayers L
and R separated by an interface with unit normal nðIIIÞ, and m3 is the volume fraction of sublayer L. To
understand the lamination process of this multirank laminate, first consider the sublayer L which is a
rank-2 laminate comprising variants (1), (2) and (5). Among them, variants (1) and (2) form a 180� rank-1
laminate, while variants (1) and (5) form a 90� domain pattern. These two rank-1 laminates can further
form a compatible rank-2 domain pattern if the compatibility conditions given by Eqs. (5) and (6) are
interpreted in the sense of average (Shu and Bhattacharya, 2001). In the present case, the average

compatibility requires nðIIÞ ¼ ð 1ffiffi
2
p ; 0;� 1ffiffi

2
p Þ. Similarly, the sublayer R is another compatible rank-2 laminate

consisting of variants (1), (2) and (6). Both sublayers R and L are characterized by local volume fractions m1
and m2. Now Fig. 2(a) is a legitimate domain pattern if sublayers R and L satisfy the compatibility conditions
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across the interface with normal nðIIIÞ in the sense of average. This is obvious by the present construction,
since variants (5) and (6) can form a lamellar 180� domain with an interfacial unit normal nðIIIÞ ¼ ð1; 0; 0Þ.
Finally, the overall strain and polarization of this rank-3 laminated domain pattern can be obtained using
Eq. (7) repeatedly in each level of laminates

hei ¼ m1e
ð1Þ þ m2ð1� m1Þe

ð2Þ þ m3ð1� m1Þð1� m2Þe
ð5Þ þ ð1� m1Þð1� m2Þð1� m3Þe

ð6Þ;

hpi ¼ m1p
ð1Þ þ m2ð1� m1Þp

ð2Þ þ m3ð1� m1Þð1� m2Þp
ð5Þ þ ð1� m1Þð1� m2Þð1� m3Þp

ð6Þ:
(8)

2.3. Domain switching

Consider a bulk ferroelectric crystal subjected to combined uniform electromechanical loads; i.e. both E�

and r� are constant in Eq. (1). If the well structure of W ðe; pÞ in Eq. (3) is steep away from the ground states,
the state of strain and polarization may assume to be restricted on the well points for most of points in the
body O. This leads to the constrained theory of ferroelectrics, originating from the study of shape-memory
alloys (James, 1986) and magnetostrictive materials (DeSimone and James, 2002), respectively. Currently, this
concept has also been extended to the study of ferromagnetic shape-memory alloys (Ma and Li, 2007).
Moreover, if the domain patterns are compatible throughout the crystal, the source of depolarization field
comes only from the unshielded boundary of the body, and not from the interior. Combining all these
features, the total potential energy per unit volume in Eq. (1) can be simplified to be

hIi ¼ �E� � hpi � r� � hei þ
1

2�0
Khpi � hpi, (9)

where K is some semipositive-definite symmetric tensor which is related to the geometry of the crystal and the
arrangement of the electrodes (Bhattacharya et al., 2008). Finally, we assume that the compatible domain
patterns are those obtained by multirank lamination described in Section 2.2. As a result, the potential energy
density in Eq. (9) can be expressed explicitly in terms of local volume fractions l ¼ ðm1; m2; . . . ;mN�1Þ; i.e.,
hIi ¼ hIiðlÞ.

Now we turn to the kinetics of domain switching. The reduction in potential energy provides the
thermodynamic driving force for domain evolution. Fig. 2 demonstrates that the domain evolution results in
the change of local volume fraction mj in the jth-rank laminate. Thus, the driving force needed to move the
major interface in the jth-rank laminate is defined by

FjðlÞ ¼ �
q
qmj

hIiðlÞ. (10)

Nevertheless, domain switching is resisted by the dissipative motion of domain walls (Huber et al., 1999). As a
result, domain switching occurs when

�F jðlÞdmj þ Gc
j ðlÞjdmjjp0, (11)

where Gc
j ðlÞ is the non-negative critical resistance force in the jth-rank laminate and the summation over the

index j implied in Eq. (11) can be removed due to the independence of mj. The explicit expression of Gc
j ðlÞ can

be obtained in terms of specific types of domain wall movements, and we illustrate it using the switching
system fðeðiÞ; pðiÞÞ; i ¼ 1; 2; 5; 6g as an example. The general result is provided in Section 2.5. Consider the
domain wall movements in Fig. 2. First assuming local volume fractions m2 and m3 are fixed. As demonstrated
in Fig. 2(a), a change in m1 will involve 90� switching in the sublayer with local volume fraction ð1� m2Þ and
180� switching in another sublayer with local volume fraction m2. Thus

Gc
1 ¼ gð1Þ1 m2 þ gð1Þ2 ð1� m2Þ, (12)

where gð1Þ1 and gð1Þ2 are coefficients associated with energy dissipation due to the movements of 180� and 90�

walls in the first rank laminate. Next, as m2 changes while m1 and m3 are kept fixed, Fig. 2(b) demonstrates that
a 90� switching occurs in the local volume fraction ð1� m1Þ. This gives

Gc
2 ¼ gð2Þ2 ð1� m1Þ, (13)
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where gð2Þ2 is the dissipation coefficient associated with the movements of 90� walls in the second rank laminate.
Finally, consider the change in m3 while others are kept constant. The net change in polarization between the
layers L and R is ð1� m1Þð1� m2Þðp

ð5Þ � pð6ÞÞ, which corresponds to 180� domain switching when the interface
separating the sublayers L and R moves. Therefore

Gc
3 ¼ gð3Þ1 ð1� m1Þð1� m2Þ, (14)

where gð3Þ1 is the dissipation coefficient related to moving 180� walls in the third rank laminate.
The term Gc

j can be also viewed as the work per unit volume dissipated in moving the interfaces in the jth-
rank of laminate. It can be determined accounting for the net change in polarization between alternating layers
in each jth-rank laminate. The total work cost per unit volume in domain switching is then given by the
corresponding dissipation coefficients multiplied by the local volume fractions involved in the process. In
addition, if the dissipation coefficients are not distinguishable among different levels of laminates, gðjÞ1 ¼ g1 and
gðjÞ2 ¼ g2, and can be determined experimentally in terms of the coercive fields Ec

180� and Ec
90� which are

required for 180� and 90� domain switchings. To see that, assume that the polarization and strain are uniform
in the crystal. Suppose the crystal is subjected to only a uniaxial electric field E� applied in the opposite
direction of polarization. As the magnitude of the field reaches a critical value Ec

180� , a 180� switching in
polarization occurs, and the work per unit volume done by this external electric field is therefore

E� � Dp180� ¼ 2PsE
c
180� 	 g1. (15)

Similarly, let the external electric field be applied perpendicular to the direction of polarization. When the field
strength is increased to a critical value Ec

90� , it will cause the polarization to switch 90�. Again, to accomplish
this process, the work per unit volume done by this external electric field is

E� � Dp90� ¼ PsE
c
90� 	 g2. (16)

2.4. Flat-plate configuration

Consider a ferroelectric single crystal in the shape of a flat plate with electrodes on the top and bottom
surfaces as shown in Fig. 3. We call this setup the ‘‘flat-plate configuration’’ which is the most common design
in ferroelectric devices. The crystal in this configuration is subjected to a constant uniaxial compressive stress
and an external cyclic electric field. Both are applied in the direction perpendicular to the plate face and
therefore, can be written as

r� ¼ s�33e3 � e3; E� ¼ E�3e3, (17)

where s�33 is a constant dead load and E�3 varies cyclically.
The crystal and reference bases are assumed to coincide together in this case; i.e., the pseudocubic ½0 0 1� axis

is normal to the plate face. The ferroelectric phase in the temperature range of interest is tetragonal under the
present consideration. According to Eqs. (4) and (17), �r� � heðiÞi ¼ �s�33Z2o0 for i ¼ 1; . . . ; 4, while �r� �
Electrode

Ferroelectric
single crystal

<p>

Applied stress

Applied stress

<p>
V=0

e3

e1

V≠0

Fig. 3. Schematic of a flat-plate configuration.
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heð5Þi ¼ �r� � heð6Þi ¼ �s�33Z140 since s�33o0, Z140 and Z2o0. Thus, from the consideration of minimizing
energy given by Eq. (9), the polarization prefers to be in the in-plane state at sufficiently large compressive
stress and small electric field. As the magnitude of the electric field increases, the crystal prefers the ½0 0 1�
polarized state since �E� � pð5Þ ¼ �E�3Pso0 and �E� � pðiÞX0 otherwise if E�340. However, this switching is
resisted by the compressive stress, and there is an exchange of stability at the critical field above which the
switching occurs. Finally, the polarization switches back to the in-plane state when the field strength decreases,
giving rise to a significant out-of-plane shape change of the specimen, as demonstrated in Fig. 3. Ideally this
stress-activated domain switching provides an actuation strain as high as ðZ1 � Z2Þ for this soft device (Shu and
Bhattacharya, 2001), and we now study the details here.

The dimensions of a ferroelectric crystal considered here are L� L�H, where L is the width of the edge
and H is the thickness. As described above, when the load is kept fixed and field is cycled, the ½0 0 1� polarized
state can be switched to either ½1 0 0� or ½0 1 0� polarized states with equal probability. This can be achieved
through either the switching system fðeðiÞ; pðiÞÞ; i ¼ 1; 2; 5; 6g or another one comprising fðeðiÞ; pðiÞÞ; i ¼ 3; 4; 5; 6g.
As both have the same potential energy in Eq. (9) for this flat-plate configuration, the problem can be
simplified if only the switching system fðeðiÞ; pðiÞÞ; i ¼ 1; 2; 5; 6g is involved for investigating the electrostrictive
response of this device. For other complicated configurations, all variants are needed to be included, and we
study it in Section 2.5.

Under this assumption, the potential energy density in Eq. (9) is reduced to

hIi ¼ �E�3hp3i � s�33h�33i þ
K

2�0
hp1i

2 (18)

for this soft device. Above, K is the depolarization constant for a rectangular geometry with thickness H and
width L, and is given by

K 
 8
H

L

X1
n¼1

½1� ð�1Þn�

n3p3
ð1� e�npL=H Þ, (19)

where the derivation of Eq. (19) is provided in Appendix A. In the last term of Eq. (18), the contribution from
hp3i is not included due to the electrical shielding on the top and bottom faces of the crystal. As discussed in
Section 2.2, these four variants fðeðiÞ; pðiÞÞ; i ¼ 1; 2; 5; 6g considered here can form a compatible rank-3 laminate,
as shown in Fig. 2. The strain and polarization averages of this laminate are given by Eq. (8). Thus, the only
non-zero components of polarization average in terms of local volume fractions mj are given by

hp1i ¼ ½m1 � ð1� m1Þm2�Ps,

hp3i ¼ ð1� m1Þð1� m2Þð2m3 � 1ÞPs, (20)

and the 33-component of the strain average is given by

h�33i ¼ ð1� m1Þð1� m2ÞZ1 þ ½m1 þ ð1� m1Þm2�Z2. (21)

The switching criterion for this switching system is given by Eq. (11) discussed in Section 2.3. But for this flat-
plate configuration, it can be further simplified to be

� ~F jðlÞdmj þ
~G
c

j ðlÞjdmjjp0, (22)

where from Eq. (10),

~F1 ¼ � E�3Psð1� m2Þð2m3 � 1Þ þ s�33ðZ2 � Z1Þð1� m2Þ

�
K

�0
P2
s ½m1 � ð1� m1Þm2�ð1þ m2Þ,

~F2 ¼ �E�3Psð2m3 � 1Þ þ s�33ðZ2 � Z1Þ þ
K

�0
P2
s ½m1 � ð1� m1Þm2�, (23)

~F3 ¼ 2E�3Ps,
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and from Eqs. (12)–(14),

~G
c

1 ¼ gð1Þ1 m2 þ gð1Þ2 ð1� m2Þ,

~G
c

2 ¼ gð2Þ2 ,

~G
c

3 ¼ gð3Þ1 , (24)

since the common term ð1� m1Þ is eliminated on both sides of F2 and Gc
2, and another common term

ð1� m1Þð1� m2Þ is also eliminated on both sides of F3 and Gc
3. Finally, the local volume fractions m1, m2 and m3

can be determined via Eqs. (22)–(24) under cyclic E�3 at fixed s�33, and we will demonstrate it in Section 4.

2.5. Other configurations

For general configurations without any symmetry in geometry and loadings, the switching system should
involve all variants in order to capture the complete electromechanical response of a ferroelectric crystal
under loadings. For tetragonal ferroelectrics, it has been shown by Li and Liu (2004) that the lowest rank of
laminate satisfying any prescribed averages of spontaneous strain and polarization is a rank-5 laminated
domain pattern. In this case, the strain and polarization averages can be expressed in terms of local volume
fractions l by

hei ¼ m1e
ð1Þ þ m2ð1� m1Þe

ð2Þ þ � � � þ m5
Y4
k¼1

ð1� mkÞe
ð5Þ þ

Y5
k¼1

ð1� mkÞe
ð6Þ, (25)

hpi ¼ m1p
ð1Þ þ m2ð1� m1Þp

ð2Þ þ � � � þ m5
Y4
k¼1

ð1� mkÞp
ð5Þ þ

Y5
k¼1

ð1� mkÞp
ð6Þ. (26)

Substituting Eqs. (25) and (26) into Eqs. (9) and (10) gives the thermodynamic driving force in terms of local
volume fraction l.

The switching criterion is the same as that in Eq. (11) except that the critical dissipation functions are given
by (Yen, 2008)

Gc
1 ¼ gð1Þ1 m2 þ gð1Þ2 ð1� m2Þ,

Gc
2 ¼ gð2Þ2 ð1� m1Þ,

Gc
3 ¼ ½g

ð3Þ
1 m4 þ gð3Þ2 ð1� m4Þ�ð1� m1Þð1� m2Þ,

Gc
4 ¼ gð4Þ2 ð1� m1Þð1� m2Þð1� m3Þ,

Gc
5 ¼ gð5Þ1 ð1� m1Þð1� m2Þð1� m3Þð1� m4Þ, (27)

where gðjÞ1 and gðjÞ2 are dissipation coefficients associated with moving 180� and 90� walls in the jth-rank
laminate. Finally, they can be simplified if they cannot be distinguished in any levels of the laminate. This gives
gðjÞ1 ¼ g1 ¼ 2Ec

180�Ps and gðjÞ2 ¼ g2 ¼ Ec
90�Ps as discussed in Section 2.3.

2.6. Model comparisons

Many approaches have been proposed to model the nonlinear electromechanical behavior of ferroelectric
materials. One of the most successful models is the one developed by Huber et al. (1999). The framework
proposed here is similar to theirs from the point of view of describing the switching processes at the crystal
lattice scale. But the two differ in the way of specifying the kinematic descriptions of switching variants and
the criterions for domain switching. We now briefly describe the differences here.
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First, the internal or kinematic variables that Huber et al. choose are incremental volume fractions of
variants switched from domain i to another domain j, and are denoted by _f ij . The changes in remanent strain
and polarization due to _f ij are not arbitrary due to Eqs. (5) and (6). According to the present model, the
satisfaction of these two equations ensures that the wall separating the domains i and j is compatible, while
Huber et al.’s model interprets it in terms of the language of crystal plasticity. For example, for the remanent
strain, the vector a in Eq. (5) is normalized to be the direction of the simple shear on the plane of unit normal n
and vice versa. As a result, this indicates that the switching process from domain i to domain j follows a locally
compatible path in their model. However, the overall compatibility may not be satisfied in general if all the
switching systems are involved. In contrast, the present framework chooses a set of local volume fractions
l ¼ ðm1;m2; . . . ;mN�1Þ to assure that the underlying multirank laminates remain compatible during evolution.
In addition, the incremental changes of strain and polarization averages can be obtained through Eqs. (25)
and (26) in terms of l and _l.

Next, the switching criterions in both models require balancing the thermodynamical driving and resistance
forces. The driving forces typically contain terms owing to electromechanical loadings. But Huber et al.’s
model includes additional terms due to changes occurring in the elastic, piezoelectric or dielectric moduli on
switching, while the present model neglects them because of the constrained assumptions on the ground states.
However, the effect of depolarization energy is only considered in the present model.

Finally, in Huber et al.’s model, the critical resistance force Gc
ij for each transformation system

represents the work per unit volume dissipated in moving domain wall separating variant i and variant j.
While in the present model, the critical resistance force Gc

j is work per unit volume dissipated in moving the
interfaces in the jth-rank of laminate. It can be determined by the consideration of net change in polarization
between alternating layers. In addition, the present lamination construction provides a simple way of specifying the
different types of domain wall movements, leading to the explicit expression of Gc

j as in Eq. (24) or (27).

3. Experiment under flat-plate configuration

An experiment to study the electromechanical behavior of BaTiO3 single crystals has been performed
under the flat-plate configuration as described in Section 2.4. A number of (0 0 1)-oriented cuboidal
BaTiO3 single crystals measuring 5mm� 5mm� 2mm have been obtained from Superconix Inc., MN,
USA. Electrodes are produced on the 5mm� 5mm surfaces. A loading fixture has been developed
for the simultaneous application of compressive stress and electric field (see Fig. 4 in Shieh et al., 2003).
It consists of brass plates which provide electrical contact to the electrode surfaces of the crystal, and
nylon spacers to insulate the crystal from the universal test frame which supplies the mechanical loading.
The upper brass plate is connected to ground via a ferroelectric analyzer for charge measurement. The lower
brass plate is connected to a high-voltage amplifier which supplies the electrical loading. Miniature strain
gauges are attached onto the 5mm� 2mm faces of the crystal to measure strain changes in the loading
direction. The entire loading fixture is supported in a silicon oil bath to prevent breakdown arcing. The details
of the experimental setup and measuring apparatuses for the hysteresis measurements can be found in Shieh
and Shu (2008).

The experimental butterfly curves (strain vs. electric field) for the present BaTiO3 single crystal are shown in
Fig. 4(a) measured at various compressive stresses ranging from 2.86 to 5.84MPa. The applied electric field
has an amplitude of 1:25MVm�1 and a frequency of 0.2Hz. Note that the strain measurement in the figure
is the ‘‘actuation strain’’, that is, the minimum strain is used as the reference point and is calibrated to be
zero following common practice. Besides the strain measurements, the two input parameters required for
the theoretical framework, Ec

180� and Ec
90� of the single crystal, have also been obtained independently from

Fig. 4(a). The coercive field Ec
180� ¼ 0:23MVm�1 is measured from the polarization hysteresis at zero

compressive stress, and Ec
90� ¼ 0:26MVm�1 is obtained from the in situ domain observation using crossed

polarizers under an arrangement where the applied electric field is perpendicular to the poling direction of the
polished crystal. Finally, the relation between the coercive field Ec

90� and coercive stress sc can be established

via the energy argument as in Eq. (9)

Ec
90�Ps ¼ scðZ1 � Z2Þ. (28)
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field points.

Table 1

Numerical input data used in Eqs. (22)–(24) under various cases I, II, III and IV

Ec
180� Ec

90� gð1Þ1
2Ec

180�Ps

gð1Þ2
Ec

90�Ps

gð2Þ2
Ec

90�Ps

gð3Þ1
2Ec

180�Ps

K

I 0.23 0.26 1 1 1 1 0

II 0.23 0.26 1 1 1 1 Eq. (19)

III 0.23 0.26 3.5 1 1 1 0

IV 0.23 0.26 3.5 1 1 1 Eq. (19)

Note that the unit for coercive fields is MVm�1.
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Using this relation gives the coercive stress sc ¼ 6:2MPa in the present crystal, since for BaTiO3, Z1 ¼ 0:67%,
Z2 ¼ �0:42% and Ps ¼ 0:26Cm�2 (Jona and Shirane, 1962).

4. Results and comparisons

4.1. Depolarization effect

Fig. 4(a) shows that with the increase of compressive stress, the measured actuation strain increases
significantly. It is mainly due to the enhancement of stress-activated 90� domain switching. In addition, the
high-elastic moduli of BaTiO3 (56–211GPa, depending on the measured directions (Li et al., 1991)) make
certain that the measured strains, even at 5.84MPa, are predominately transformation strains by domain
switching, and the contribution of mechanical elastic strains can be ignored. However, it is also observed from
the butterfly loops of Fig. 4(a) that the measured actuation strains are all far smaller than the theoretical
maximum. Indeed, the theoretical maximum actuation strain, allowed by crystallography, is ðZ1 � Z2Þ for
tetragonal ferroelectric single crystals (Shu and Bhattacharya, 2001). Thus, for BaTiO3 crystals, this maximum
is 1.09%. The measured maximum actuation strain from Fig. 4(a), however, is only around 0.45% at
5.84MPa. Certain visible microcracks have been observed within the crystal when the applied stress exceeds
5.84MPa, leading to smaller strain.

The switching criterion proposed by Eq. (22) is employed to explain such a significant reduction in strain.
The input parameters used for simulation include Ec

180� ¼ 0:23MVm�1 and Ec
90� ¼ 0:26MVm�1 measured

from the present BaTiO3 crystal, as described in Section 3. The dissipation coefficients are assumed to be not
distinguished in any levels of the laminate. With these parameters listed in Table 1 (cases I and II), the
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Fig. 5. Butterfly loops are simulated to demonstrate the effect of depolarization on actuation strains. The dashed/solid lines are the results
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sc ¼ 6:2MPa.
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influence of different compressive stresses on the butterfly loops is demonstrated in Fig. 5 for various selected
stress levels (s1 ¼ 0:6MPa, s2 ¼ 1:5MPa, s3 ¼ 2:86MPa and s4 ¼ 4:5MPa). In each of Figs. 5(a)–(d) there
are two curves: the one with the dashed line neglects the depolarization effect (K ¼ 0), while the other one with
the solid line includes this influence (Ka0). Apparently, except for very small compressive stresses, the
actuation strain always reaches the theoretical maximum 1.09% if the depolarization effect is not taken into
account. In contrast, if this effect is considered, an obvious strain reduction is observed in Fig. 5 as long as the
compressive stress is smaller than the coercive stress sc. The simulation results demonstrate that the
depolarization field has a non-trivial effect which hinders the actuation strain from achieving its theoretical
maximum.

To understand the wide difference as illustrated in Fig. 5, the driving and resistance forces for domain
evolution described by Eqs. (23) and (24) are revisited analytically. The crystal initially prefers the [0 0 1]
polarized state at large positive electric field. This corresponds to m1 ¼ m2 ¼ 0 and m3 ¼ 1 according to
Eq. (20). The switching starts when the field decreases and reaches the value determined by

�PsE
�
3 þ ðZ2 � Z1Þs

�
33 þ

K

�0
Pshp1i ¼ PsE

c
90� . (29)

Obviously if the depolarization effect is not taken into account; i.e., K ¼ 0 in Eq. (29), the 90� switching
process would be completed if the electromechanical loading is balanced by PsE

c
90� , and therefore, the
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actuation strain would achieve its maximum value ðZ1 � Z2Þ. Indeed, from Eq. (29) with K ¼ 0, the smallest
compressive stress in the absence of depolarization effect such that above it the theoretical maximum strain
can be achieved is

js�33j ¼
PsðE

c
90� � Ec

180� Þ

Z2 � Z1

����
����.

In the present case, it is 0.72MPa and the corresponding normalized stress ratio by coercive stress is 0.11.
Above this ratio, the actuation strains always attain to the maximum value 1.09% as can be seen from Fig. 5.
On the other hand, if Ka0 in Eq. (29), the initiation of switching depends on hp1i, and the determination of it
can be obtained by balancing the driving against resistance forces in Eqs. (23) and (24).

Next, a further examination of the simulated butterfly curves (solid lines) in Fig. 5 reveals that they only
qualitatively agree with experimental measurements shown in Fig. 4(a). For example, the maximum actuation
strains obtained from Figs. 5(c) to (d) are 0.61% and 0.88%, respectively. They are larger than the measured
strains as shown in Fig. 4(a) at the identical level of compressive stresses 2.86 and 4.50MPa. It suggests that
the depolarization-induced hardening is unlikely the sole reason for the pronounced reduction in actuation
strain observed in experiment. Indeed, Fig. 5 is obtained assuming dissipation coefficients are not
distinguishable among different levels of laminates. However, the construction of a multirank laminate
assumes that the scales are widely separated, leading to much finer and many more twin structures in the
lowest rank of laminate. Intuitively, it may imply that the wall movements in the lowest rank of laminate cost
more energy dissipation than in other higher ranks of laminate. To account for that, Fig. 6 are butterfly loops
obtained by increasing the dissipation coefficient gð1Þ1 whose value is listed in Table 1 (cases III and IV).
The selected levels of stress are identical to those in Fig. 5. The dashed lines (case III in Table 1) in Fig. 6
neglecting the depolarization effect indicate that the actuation strains cannot be reduced by simply en-
larging the dissipation coefficient gð1Þ1 alone. On the other hand, the solid lines (case IV in Table 1) in Fig. 6
accounts for the depolarization effect, showing that the actuation strains in this case are further reduced by
increasing gð1Þ1 .

Finally, with the illustration of Figs. 5 and 6, the effect of depolarization field and non-identical dissipation
coefficients in different levels of laminate is taken into account in the simulated butterfly loops of Fig. 4(b)
under various compressive stresses identical to those applied in experiment. The numerical values used to
generate Fig. 4(b) are the same of those listed in the case IV of Table 1, where the value of gð1Þ1 is chosen to fit
the measured actuation strain under the compressive stress 5.84MPa. Surprisingly the predicted actuation
strains for other levels of compressive stress (2.86, 3.49, 4.50MPa) in Fig. 4(b) also agree quite well with the
measured strains, as shown in Fig. 4(a). However, the shapes of these simulated curves are different
qualitatively in several respects; in particular, the onset of 90� switching occurs much earlier in Fig. 4(a) than
in Fig. 4(b). This could be explained by our in situ measurement of Ec

90� . We have observed that a small
portion of 90� domains was developed at an early stage of the electric loading. To account for it, we identify
two field points, i.e. the onset point Ec;o

90� and the finish point Ec;f
90� . According to the experimental

measurements, they are Ec;o
90� ¼ 0:06MVm�1 and Ec;f

90� ¼ 0:26MVm�1. We further assume that the 90� coercive
field starts at Ec;o

90� and rapidly increases to Ec;f
90� linearly at a small value of m2. The simulated butterfly curves

including this consideration are shown in Fig. 4(c). Clearly, the inclusion of the onset/finish field points as well
as the interpolation between these two will not affect the magnitudes of attainable actuation strains. It only
influences the initiation of 90� switching and the shape of hysteresis loops. As the present study concerns the
factors causing strain reduction and the precise interpolation between the onset and finish field points is not
available from experiment, the exact shapes of butterfly loops are not pursued here.

4.2. Comparison with other experiment

Recently, Burcsu et al. (2004) have performed an experimental investigation of electrostrictive behavior of
BaTiO3 single crystals using the flat-plate configuration. Although measured with an entirely different loading
setup to the present study, they also observed the reduction in strain actuation. For comparison, the maximum
actuation strains produced by the present and Burcsu et al.’s BaTiO3 single crystals are shown in Fig. 7 in the
form of largest strain hysteresis loops. The former exhibits the maximum strain around 0.45% under the
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Fig. 6. Butterfly loops are simulated to demonstrate the effect of enlarging the dissipation coefficients in the lowest rank of laminate on the

attainable actuation strains under various compressive stresses. The dashed/solid lines are the results excluding/including the

depolarization effect, respectively. Note that s1 ¼ 0:6MPa, s2 ¼ 1:5MPa, s3 ¼ 2:86MPa, s4 ¼ 4:5MPa and sc ¼ 6:2MPa.
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compressive stress of 5.84MPa, while the latter shows a strain about 0.8% at 1.78MPa compressive stress. To
simulate the wide difference observed in these two experiments, consider the switching criterion proposed by
Eq. (22). The simulated strain hysteresis curve of the present crystal is taken from that shown in Fig. 4(c) at the
maximum stress. To simulate the hysteresis behavior of Burcsu et al.’s crystal, however, only one of the
coercive fields Ec

180� ¼ 0:04MVm�1 has been measured. Another coercive field Ec
90� is not available from their

work. Thus, the data Ec
90� ¼ 0:046MVm�1 measured by Li et al. (1992) is chosen, since the magnitudes of the

switching stresses are similar in these two experimental works. Moreover, we take the same ratio
gð1Þ1 =2Ec

180�Ps ¼ 3:5 in these two simulations, and the results are also shown in Fig. 7. It is obvious that the
present switching model is capable of explaining the different electrostrictive behaviors observed by these two
experiments.

The reason that the present crystal exhibits significantly lower strain outputs in comparison with
Burcsu et al.’s crystal is explained via the argument of depolarization effect. From Fig. 2(a), the in-plane
alternating layers of 180� domains are formed to reduce the depolarization energy. But the domain pattern
needs to remain compatible during evolution. As a result, under combined electromechanical loading, the
development of local volume fraction m1 induces both the 90� and 180� switchings. In other words, the
presence of non-local electrostatic field requires concurrent 180� switching, and therefore, the mobility of 180�
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Fig. 7. Comparison of maximum actuation strains between the present and Burcsu et al.’s BaTiO3 single crystals (Burcsu et al., 2004) in

the form of largest strain hysteresis loops. The simulated and measured butterfly hysteresis loops are presented using the thick solid and

dashed lines for the present crystal, while using the thin solid and dashed lines for Burcsu et al.’s crystal.
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domain walls may affect the electrostrictive hysteresis. Indeed, the measured coercive field Ec
180� of the present

crystal is about an order of magnitude larger than that of Burcsu et al.’s crystal. This may cause 90� switching
harder in the present crystal under combined electromechanical loading, giving rise to smaller strain in
actuation.

5. Conclusions

In this article, a switching model is developed to predict the electromechanical behavior of a ferroelectric
single crystal under applied electric field and stress. The framework starts with an energetic description of a
ferroelectric crystal together with a treatment on the depolarization energy. It employs a domain configuration
constructed by compatible multirank lamination, and that switching is assumed to be enabled by its evolution
under loading. In addition, introducing laminated domains offers a great advantage of specifying different
types of wall movements, leading to an explicit expression of critical resistance forces as in Eq. (24) or (27). All
these features make the present framework a valuable alternative to the other celebrated switching models,
such as the one developed by Huber et al. (1999).

The model is applied to explain the significant reduction in strain actuation observed in our recent
experiment on BaTiO3 single crystals under the flat-plate configuration. Simulations based on two measured
parameters Ec

180� and Ec
90� indicate strain reduction due to the inclusion of depolarization effect, as shown in

Fig. 5. Other possible mechanisms such as friction effect and coercive hardening could also be adopted to
explain it; however, they may need adjustable parameters. Moreover, the former is governed by the
experimental setup and the latter is typically insignificant for single crystals.

Finally, the vastly different actuation strains produced by the present and Burcsu et al.’s BaTiO3 single
crystals (Burcsu et al., 2004) are compared and explained using the proposed model. The simulated results
shown in Fig. 7 are found in good agreement with the observed strains for these two different experiments. It
confirms that the present framework is able to capture many important features in the electrostrictive behavior
of ferroelectric single crystals, and thus is expected to assist the development of reliable constitutive models for
ferroelectric polycrystals.



ARTICLE IN PRESS
J.H. Yen et al. / J. Mech. Phys. Solids 56 (2008) 2117–2135 2133
Acknowledgments

We are grateful to K. Bhattacharya for many helpful discussions and to E. Burcsu for providing the
experimental data shown in Fig. 7. The authors are glad to acknowledge the partial supports under Grant nos.
NSC 96-2628-E-002-119-MY3, NSC 96-2221-E-002-159 and 96-EC-17-A-05-S1-017.

Appendix A. Derivation of the depolarization coefficient K in Eq. (19)

Consider a ferroelectric crystal occupying the domain O ¼ f�L=2ox1oL=2;�H=2ox3oH=2g, where L

and H denote the width and thickness of the rectangle. The electrodes are produced on the top and bottom
edges. Let p ¼ ðp1; p3Þ be the average polarization inside the crystal. We assume that the system is completely
shielded for x34H=2 and x3o�H=2. The electric potential of the system can be obtained by solving the
Maxwell’s equation
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with boundary conditions given by
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��0
qfþ

qx1
�

L

2
;x3

� �
þ �0

qf�

qx1
�

L

2
;x3

� �
¼ p1,

fþ bounded as x1!�1.

As the solution of Eq. (A.1) together with Eq. (A.2) can be obtained following the standard technique of
separation of variables, the depolarization energy density wd can be shown to be

wd ¼
Wd

HL
¼

1

2HL

Z
O
p � rf� dx1 dx3

¼
1

2�0
8

H

L

X1
n¼1

½1� ð�1Þn�

n3p3
ð1� e�npL=H Þ

" #
p2
1.

This in turn gives the depolarization coefficient K by

8
H

L

X1
n¼1

½1� ð�1Þn�

n3p3
ð1� e�npL=H Þ. (A.3)

However, Eq. (A.3) is viewed as an approximation since the assumption of completely electrical shielding for
x34H=2 and x3o�H=2 may not hold if H=L is not very small.
References

Arlt, G., Sasko, P., 1980. Domain configuration and equilibrium size of domains in BaTiO3 ceramics. J. Appl. Phys. 51, 4956–4960.

Bassiouny, E., Ghaleb, A.F., Maugin, G.A., 1988a. Thermodynamic relations for coupled electromechanical hysteresis effects I. Basic

equations. Int. J. Eng. Sci. 26, 1279–1295.



ARTICLE IN PRESS
J.H. Yen et al. / J. Mech. Phys. Solids 56 (2008) 2117–21352134
Bassiouny, E., Ghaleb, A.F., Maugin, G.A., 1988b. Thermodynamic relations for coupled electromechanical hysteresis effects II. Poling of

ceramics. Int. J. Eng. Sci. 26, 1297–1306.

Bhattacharya, K., Ravichandran, G., 2003. Ferroelectric perovskites for electromechanical actuation. Acta Mater. 51, 5941–5960.

Bhattacharya, K., Li, J.Y., Shu, Y.C., 2008. Homogenization of Ferroelectric Polycrystals, in manuscript.

Burcsu, E., Ravichandran, G., Bhattacharya, K., 2000. Large strain electrostrictive actuation in barium titanate. Appl. Phys. Lett. 77,

1698–1700.

Burcsu, E., Ravichandran, G., Bhattacharya, K., 2004. Large electrostrictive actuation of barium titanate single crystals. J. Mech. Phys.

Solids 52, 823–846.

Cao, W.W., 2005. The strain limits on switching. Nat. Mater. 4, 727–728.

Chen, L.Q., 2002. Phase-field models for microstructure evolution. Annu. Rev. Mater. Res. 32, 113–140.

Chen, X., Fang, D.N., Hwang, K.C., 1997. Micromechanics simulation of ferroelectric polarization switching. Acta Mater. 45,

3181–3189.

Dayal, K., Bhattacharya, K., 2007. A real-space non-local phase-field model of ferroelectric domain patterns in complex geometries. Acta

Mater. 55, 1907–1917.

DeSimone, A., 1993. Energy minimizers for large ferromagnetic bodies. Arch. Ration. Mech. Anal. 125, 99–143.

DeSimone, A., James, R.D., 2002. A constrained theory of magnetoelasticity. J. Mech. Phys. Solids, 283–320.

Elhadrouz, M., Zineb, T.B., Patoor, E., 2005. Constitutive law for ferroelectric and ferroelastic single crystals: a micromechanical

approach. Comput. Mater. Sci. 32, 355–359.

Fotinich, Y., Carman, G.P., 2000. Stresses in piezoceramics undergoing polarization switchings. J. Appl. Phys. 88, 6715–6725.

Fulton, C.C., Gao, H., 2001. Microstructure modeling of ferroelectric fracture. Acta Mater. 49, 2039–2054.

Hong, S., Colla, E.L., Kim, E., Taylor, D.V., Tagantsev, A.K., Muralt, P., No, K., Setter, N., 1999. High resolution study of domain

nucleation and growth during polarization switching in PbðZr;TiÞO3 ferroelectric thin film capacitors. J. Appl. Phys. 86, 607–613.

Huber, J.E., 2005. Micromechanical modelling of ferroelectrics. Curr. Opin. Solid State Mater. Sci. 9, 100–106.

Huber, J.E., Fleck, N.A., 2001. Multi-axial electrical switching of a ferroelectric: theory versus experiment. J. Mech. Phys. Solids 49,

785–811.

Huber, J.E., Fleck, N.A., Landis, C.M., McMeeking, R.M., 1999. A constitutive model for ferroelectric polycrystals. J. Mech. Phys. Solids

47, 1663–1697.

Hwang, S.C., Lynch, C.S., McMeeking, R.M., 1995. Ferroelectric/ferroelastic interactions and a polarization switching model. Acta

Metall. Mater. 43, 2073–2084.

James, R.D., 1986. Displacive phase transformations in solids. J. Mech. Phys. Solids 34, 359–394.

Jona, F., Shirane, G., 1962. Ferroelectric Crystals. Pergamon Press, New York.

Kamlah, M., 2001. Ferroelectric and ferroelastic piezoceramics—modeling of electromechanical hysteresis phenomena. Continuum Mech.

Thermodyn. 13, 219–268.

Kamlah, M., Tsakmakis, C., 1999. Phenomenological modeling of the non-linear electromechanical coupling in ferroelectrics. Int. J. Solids

Struct. 36, 669–695.

Kamlah, M., Liskowsky, A.C., McMeeking, R.M., Balke, H., 2005. Finite element simulation of a polycrystalline ferroelectric based on a

multidomain single crystal switching model. Int. J. Solids Struct. 42, 2949–2964.

Kessler, H., Balke, H., 2001. On the local and average energy release in polarization switching phenomena. J. Mech. Phys. Solids 49,

953–978.

Kim, S.J., Jiang, Q., 2002. A finite element model for rate-dependent behavior of ferroelectric ceramics. Int. J. Solids Struct. 39,

1015–1030.

Kim, S.J., Seelecke, S., 2007. A rate-dependent three-dimensional free energy model for ferroelectric single crystals. Int. J. Solids Struct.

44, 1196–1209.

Landis, C.M., 2002. Fully Coupled, multi-axial, symmetric constitutive laws for polycrystalline ferroelectric ceramics. J. Mech. Phys.

Solids 50, 127–152.

Landis, C.M., 2004. Non-linear constitutive modeling of ferroelectrics. Curr. Opin. Solid State Mater. Sci. 8, 59–69.

Landis, C.M., McMeeking, R.M., 2001. A self-consistent constitutive model for switching in polycrystalline barium titanate. Ferroelectrics

255, 13–34.

Li, J.Y., Liu, D., 2004. On ferroelectric crystals with engineered domain configurations. J. Mech. Phys. Solids 52, 1719–1742.

Li, W.F., Weng, G.J., 2002. A theory of ferroelectric hysteresis with a superimposed stress. J. Appl. Phys. 91, 3806–3815.

Li, W.F., Weng, G.J., 2004. A micromechanics-based thermodynamic model for the domain switch in ferroelectric crystals. Acta Mater.

52, 2489–2496.

Li, Z., Chan, S.K., Grimsditch, M.H., Zouboulis, E.S., 1991. The elastic and electromechanical properties of tetragonal BaTiO3 single

crystals. J. Appl. Phys. 70, 7327–7332.

Li, Z., Foster, C.M., Dai, X.H., Xu, X.Z., Chan, S.K., Lam, D.J., 1992. Piezoelectrically-induced switching of 90� domains in tetragonal

BaTiO3 and PbTiO3 investigated by micro-Raman spectroscopy. J. Appl. Phys. 71, 4481–4486.

Little, E.A., 1955. Dynamical behavior of domain walls in barium titanate. Phys. Rev. 98, 978–984.

Liu, T., Lynch, C.S., 2003. Ferroelectric properties of [1 1 0], [0 0 1] and [1 1 1] poled relaxor single crystals: measurements and modeling.

Acta Mater. 51, 407–416.

Loge, R.E., Suo, Z., 1996. Nonequilibrium thermodynamics of ferroelectric domain evolution. Acta Mater. 44, 3429–3438.

Lu, W., Fang, D.N., Li, C.Q., Hwang, K.C., 1999. Nonlinear electric-mechanical behavior and micromechanics modelling of ferroelectric

domain evolution. Acta Mater. 47, 2913–2926.



ARTICLE IN PRESS
J.H. Yen et al. / J. Mech. Phys. Solids 56 (2008) 2117–2135 2135
Ma, Y.F., Li, J.Y., 2007. A constrained theory on actuation strain in ferromagnetic shape memory alloys induced by domain switching.

Acta Mater. 55, 3261–3269.

McMeeking, R.M., Landis, C.M., 2002. A phenomenological multi-axial constitutive law for switching in polycrystalline ferroelectric

ceramics. Int. J. Eng. Sci. 40, 1553–1577.

Michelitsch, T., Kreher, W.S., 1998. A simple model for the nonlinear material behavior of ferroelectrics. Acta Mater. 46, 5085–5094.

Park, S.E., Shrout, T.R., 1997. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82,

1804–1811.

Ren, X.B., 2004. Large electric-field-induced strain in ferroelectric crystals by Poin-defect-mediated reversible domain switching. Nat.

Mater. 3, 91–94.

Ricote, J., Whatmore, R.W., Barber, D.J., 2000. Studies of the ferroelectric domain configuration and polarization of rhombohedral PZT

ceramics. J. Phys. Condens. Matter 12, 323–337.
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