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Abstract

Fine grain methods for parallelization of the H.264 decoder have good latency performance and less memory usage.
However, they could not reach the scalability of Group of Pictures (GOP) level approaches although assuming a well-
designed entropy decoder which can feed the increasing number of parallel working cores. We would like to introduce
a GOP level approach due to its high scalability, mentioning solution approaches for the well-known latency and
memory issues. Our design revokes the need to a scanner for GOP start-codes which was used in the earlier methods.
This approach lets all the cores work on the decoding task. Our experiments showed that the memory operations may
degrade the scalability of parallel applications substantially. The multicore cache architecture appeared to be a critical
point for getting the desired speedup.
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1. Introduction

Video encoding and decoding is among the tasks de-
manding very high performance computing. This de-
mand keeps increasing when we consider the recent de-
velopments in video technologies like 3D TV and Ul-
tra High Definition Video. The computation power of a
home appliance may become insufficient to decode the
huge amount of data needed by those applications.

After Instruction Level Parallelism approached to sat-
uration, Thread Level Parallelism gained more and more
importance day by day. Today chip multi-processors
(CMPs) are wide-spread, and the number of cores in
a CMP is expected to be doubled in every 3 year [1].
This phenomenon increases the importance of data-
parallel algorithms for applications needing high com-
puting power.
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Recent works on video decoder parallelization pre-
ferred fine-grain methods, but they could not reach the
scalability of coarse-grain schemes. In this paper, we in-
troduce a GOP-level approach for H.264 video decod-
ing. The main point of our design is that; it does not
need a GOP start-code scanner. We accept that GOP-
level parallelism needs more memory resources and has
long latency problem. We will mention the possible so-
lutions to these problems.

Our work showed that memory bandwidth in multi-
core architectures is the main bottleneck for highly scal-
able applications. Programs processing large amount of
data has to deal with a huge amount of memory load-
store operations. When each core has not a direct path
to the memory for write and read operations the band-
width becomes insufficient for parallel working cores.
We will see the importance of efficient memory usage in
the results section. In a program processing big amount
of data, choosing a function inefficiently may cause the
program run 2 times slower.

2. Structure of the H.264 decoder and paralleliza-
tion opportunities

The system first entropy decodes the coming stream.
There are two choices for entropy coding: CAVLC and
CABAC. CABAC is available only in the main profile
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and uses more computations for achieving a better com-
pression. Entropy decoding is mostly a sequential com-
putation and hard to parallelize.

After entropy decoding the pictures are reordered and
passed through inverse quantization. This is followed
by inverse integer transform. Then, intra prediction or
motion compensation is performed according to the pic-
ture type. Finally the picture is passed through a de-
blocking filter.

There are several alternatives for data level paral-
lelism offered by the structure. Figure 1 shows the data
structure in a video sequence. The sequence is first dev-
ided into GOPs, each having a certain number of frames.
Frames are devided into slices of variable sizes. Slices
consist of macroblocks each containing 4 luma and 2
chroma blocks. Each level is a candidate for partition-
ing the data to be decoded.

Ref. [7] gives a good summary of the paralleliza-
tion methods. The highest level is the Group of Pic-
tures level parallelism. The video stream is divided into
groups of pictures for enabling video control functions
and synchronization. GOP level parallelism provides
high scalability but requires more memory resources.
Since there are no dependencies between GOPs, the
threads do not need to wait for synchronization oper-
ations in this approach.

In frame-level parallelism, each frame is handled by
one thread. The main problem of this approach is the
frame referencing. In H.264 all I, P, and B frames might
be referenced by others. This flexibility makes frame
level parallelism hard to implement.

Another choice is slice level parallelism. In order to
ensure error resilience, frames are divided into slices,
which are independent from each other. So slices might
be processed in parallel. However, scalability of this
approach is limited, because the number of slices is de-
cided by the encoder. Besides increasing slice number
results in increase in the bit rate.

Recently, most popular approach is the macroblock
level parallelism. In this approach macroblocks are
processed in parallel after dependencies have been re-
solved. Major problem of this approach is its depen-
dence on a high performance entropy decoder.

Finally, the finest approach is block level parallelism.
Block level parallelism might be used with SIMD in-
structions, for operations like deblocking, IDCT and in-
terpolations which are done at block level.

3. Parallelization strategy

In a highly scalable model, dependencies between
parallel threads must be as low as possible and sequen-

tial section of the algorithm must be minimized.

Another important issue is efficient resource usage.
Manager-worker architectures allocates one core in the
system for task scheduling, and only P-1 of P processors
can work on the parallel decoding task. So, in a 4 core
CMP we may only expect a speed up of 3.

Most of the parallel decoders we mentioned in related
work part, uses a scheduling component. Besides, allo-
cating one core for scheduling issue, this adds a sequen-
tial section to the overall decoding task. The scheduler
may easily become insufficient for feeding the increas-
ing number of parallel working cores.

Scalability of a fine grain scheme is limited due to
the dependencies among the macroblocks. Before start-
ing to decode a macroblock the system needs to wait
for all other referenced macroblocks be decoded. An-
other limit for the fine-grain methods is the speed of the
entropy decoder. A separate core should be employed
in entropy decoding, and this sequential decoding must
be very fast for feeding lots of parallel macroblock de-
coders.

Here we present a GOP-level scheme that doesn’t
need a start-code scanner: Scanless-GOP. In GOP-level
parallelism each group of pictures is handled in a pro-
cessor as shown in figure 2. We employ closed GOPs
in our evaluation for the sake of simplicity, but methods
for open GOP structures are also introduced in previous
works like [1] and [2]. In a closed GOP structure there
aren’t any references between two GOPs. So each GOP
can be decoded in a separate core without any depen-
dency.

However there is another issue limiting the scalabil-
ity of the system: Before starting to decode a GOP, a
process must know the start point of it. In previous
approaches a separate process scans the input stream
for GOP start-codes, cuts the stream into segments and
places these in a task queue.

Actually, we do not need to search for these start
codes every time we decode the video. We know their
positions in the stream during the encoding process. So
these start points can be written in the header of the
video stream or in a separate file. For our evaluation, we
produced the start points file by means of the decoder,
but the same job may easily be done by the encoder as
well. Before staring to decode, each process can read
these start points into an array, and decode its own por-
tion without waiting for anything.

After this observation we may suggest the following
parallel decoding algorithm:

1. Read the start points into an array.
2. i1 = process id number
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Figure 1: Data structure of H.264 video sequence and partitioning alternatives

3. While (not end of the stream)
4, Decode (i)th GOP
5. i =i + (total process number)

The Decode (i)th GOP part of the algorithm includes
writing the decoded frames into a disk or a display de-
vice or a collector process, but we will exclude this time
in our performance calculations.

4. Experimantal methodology

In our performance evaluations, we used the
H.264/AVC reference software JM as the starting
point. After parallelizing the program according to our
method, we tested our parallel algorithm using a clus-
ter of 5 IBM x3550 machines. Each machine has two
4-core Xeon 5500 series processors. We have tested 3
different situations using 3 different GOP sizes. GOP
size affects the performance since it has a direct effect
on the memory usage. In order to see the performance
on a bounty of computing resources, first we ran just one
process in each machine. Then we performed a test on
one machine only, to see the performance on a shared-
memory platform. And then, we checked the perfor-
mance using all of the 40 cores. We used Intel’s VTune
to profile the processor events during the program exe-
cution. Profiling results has been very helpful for find-
ing out the bottlenecks of the parallel program. Finally,
we tested the run-time and speedup in a different ma-
chine having a different multicore cache architecture to
see the effect of cache structure on scalability.

5. Results and discussion

5.1. Speedup improvement when we remove the start-
code scanner

The speedup gain in coarse grain approaches may be
limited in CMP architectures due to memory issues. If
we also add some sequential scheduling part to the over-
all parallel program we might encounter with very dis-
appointing results like in figure 3. Here we see that in a
2 x 4 core machine, the run-time of the algorithm using
a start-code scanner hardly decreases from 13.286 sec
to 11.057 sec in the minimum case when using 6 cores
and than starts to increase again.

In figure 3 we see that when we remove the scanner
from the algorithm by using ready start codes, we can
get the run time decrease from 13.233 sec to 6.105 sec
in the minimum case when using 7 cores.

Removing the GOP start-code scanner makes our al-
gorithm purely parallel. Now each process is decoding
its own part of data without sharing data with other pro-
cesses. Besides there is not any scheduler or manager
processes assigning tasks to others. So ideally, this al-
gorithm should let each process work without any syn-
chronizations.

We can see in figure 4 that maximum speedup jumps
from 1.2 to 2.16 when we remove the scanner.

5.2. Performance in multi machines

We have seen that the speedup in 1 machine is
bounded at 2.16. That is not compatible with the ex-
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Figure 3: Run-time comparison of the algorithm with start-code scan-
ner vs. the algorithm without a start-code scanner

pected ideal performance of this algorithm. In order to
be sure we can check the results in figure 5. Here we see
the speedups for different GOP sizes when we run only
1 process in each machine. This figure is very close to
what we expect: we see a very beautiful, linear, one-to-
one speedup!

To be sure, we may also check what would happen
if we used all the available 40 cores in the 5 machines.
Figure 6 shows that we can get a maximum of 11 times
speedup when we keep the GOP size very small. GOP
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Figure 4: Speedup comparison of the algorithm with start-code scan-
ner vs. the algorithm without a start-code scanner

size affects the speedup, because it affects the memory
usage. A speedup of 11 is reasonable. It approximately
equals the speedup in 1 machine, 2.16, times the number
of machines, 5.

But, what is the bottleneck in shared-memory plat-
forms?

5.3. The bottleneck in shared-memory platforms

We have seen that our algorithm does not have a very
good scalability in single machines when using a shared
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Figure 6: Speedup when we use all the 40 cores in 5 machines

memory, even though it produces a very good plot in
multiple machines. As we mentioned in our conference
paper [8] cache pollution is thought to be the main fac-
tor affecting the performance in chip multiprocessors.
In order to be sure let’s check out the profiling results
obtained by Intel’s vTune.

We see the impact of parallelization on branch mis-
predictions in figure 7. There is a slight increase in mis-
predicted branches. This must be due to the increase
in instruction count. The maximum number of branch
mispredictions is just about 420, which is a low number.

A reason of performance degradation might be reg-
ister allocation table stalls. We can see how RAT stall
number changes as we increase the number of parallel
working processors. There is a general slight increase
as we see in figure 8. The increase in RAT stall num-
ber may be counted as normal, since we get all the idle
cores in the machine work.

We see a surprising result in figure 9 and figure 10.
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Figure 7: Parallelization impact on branch mispredictions
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Figure 8: Register allocation table stalls

Major result of cache pollution is that it increases the
cache misses. The data written into the cache newly,
causes replacement of the data already in the cache.
So when the program needs the replaced data it has to
reload it from the memory system. The amount of data
processed by a video decoder is very large. It is ex-
pected that when each core processes 1 GOP its cache
be filled quickly. So we expect a big number of cache
misses. However, we see a pretty good L1 cache perfor-
mance and an almost ideal L2 cache performance: 17
misses at most.

So, what causes the speedup degradation? Figure 11
takes us close to the answer. 189072 resource stalls oc-
cur when 1 core is work, this number increases as we
increase the parallel working core number and reaches
736559 when we employ 8 cores. This may explain the
matter. Now, we know that there is a resource shortage,
but which resource is not sufficient?

Figure 12 gives the answer. We see that almost all of
the resource stalls are because of load-store operations.
We cannot even see the plot for other stalls since their
number is too small when compared with the resource
stalls due to the load-store operations. When 1 core is
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Figure 11: Effect of parallel processing on resource stalls

working there are 177,117 stalls due to load-store oper-
ations. The stall number increases to 732,792 when all
the 8 cores are working in parallel. We have seen that
cache performance is quite good. So we should suspect
the performance of store operations.

5.4. Most active functions

It is the time now to check the most active functions
in the system. Figure 13 is very interesting. Function
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Figure 12: Effect of parallel processing on different kinds of resource
stalls

memset takes the 70.47% of the whole system for serial
execution. This means that most of the time is spent for
setting memory locations to a specific value. Basically,
we expect store operations to be faster than the load op-
erations. Because during a store the processor can con-
tinue to execute other instructions after sending it to the
memory system, it does not need to wait for the store op-
eration to finish. But store operations are also done via
cache levels. They affect the cache bandwidth and take
longer than calculation instructions. When too many
stores are executed one after another, the store buffer
of the processor fills up, and this causes the load-store
resource stalls.
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Figure 13: Most active functions in the system during serial run

5.5. Impact of memory initializations

We noticed that most of the calls to memset function
is done by the calloc function which allocates a location
in the memory and initializes these locations to zero.
But are all these initializations needed? The answer is
system dependent. For portability reasons, in the refer-
ence software, all the memory allocations are done with



an initialization. Not affecting the correct program ex-
ecution for linux, we have changed most of the calloc
functions to malloc, which allocates memory, but does
not initialize the allocated addresses. We can see the
great difference in run time and speedup in figures 14
and 15.
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Figure 14: Run time improvement after removing unnecessary mem-
sets
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Figure 15: Speedup improvement after removing unnecessary mem-
sets

We see that the runtime changed from 6.105 to 2.881,
that is we got a speedup of 2.119 just by changing the
function calloc to malloc in suitable places. This shows
the impact of memory operations on the performance.
The scalability of our algorithm also improved. The
speedup due to parallel processing was 2.167 at most
before, now we can see a speedup of 2.516.

Figure 16 shows the most active functions in the sys-
tem after the modification . We see that the %age of the
memset function decreased to 60.03%.

We have seen that resource stalls due to the store op-
erations is the main bottleneck of this application. Most
of the execution time is used by memset function which
sets a memory area to a specific value. This is done
when resetting a data-structure before starting to use it
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Figure 16: Most active functions in the system during serial run

for some different calculation. But this resetting gets
very expensive when it is done again and again. It con-
sumes 60% of the runtime even after we removed the
unnecessary ones for linux operating system.

The processors, repeat the store operation of the same
value for the number of items to be initialized. When we
have some big amount of data to be initialized this re-
sults in a long latency. A possible way to make these
memory initializations faster might be using the non-
temporal stores which is offered by SSE instruction set.
These instructions stores the data directly to memory
without cache allocation. So in the first glance, we may
think that they might have a better scalability, because
the cores will not wait for each other for writing to the
same cache. However, they will bypass the cache sys-
tem, only if the related address is not cached. For the
case of memory initializations, almost all the data we
deal with is already in the cache, because we are reset-
ting some data that we have already used. So we should
not be so hopeful about non-temporal store instructions
for our problem. Indeed, when we changed the memset
function with a function using non-temporal stores, we
did not observe any speedup.

5.6. Impact of cache architecture

Finally, we should check the effect of cache archi-
tecture on scalability. The processor we used till now
is Intel Xeon 5500 Series 4-core architecture. It has a
shared L2 cache of 8MB. We may suspect that a shared
cache may degrade the performance of parallel process-
ing. As we increase the parallel working core number
the cache size available for each core decreases!

The results we obtained up to this point reveal that
shared cache architectures are not suitable for highly
scalable data-intensive parallel applications. Even
though we haven’t encounter a misprediction problem
due to enough cache size, the store operations caused
the cores wait for each other to write to the same cache.



The performance of shared cache structures might be
enhanced by providing a separate read-write port for
each core in the environment. In our case, we saw that
even though the cores are working on totally different
data, they had to wait for using the shared resources.
We measured 177,117 stalls due to load-store operations
when working with 1 core. The stall number increased
to 732,792 when all the 8 cores joined the calculation.

Therefore, we tested the performance of our algo-
rithm in a different platform. We used AMD Turion
64 X2 dual-core mobile technology processor for com-
parison. The architecture of this processor is given in
figure 17. We see that in this processor there are two
separate level 2 caches for each core. Each cache is
512KB. We should not be surprised that the machine
with AMD dual core processor is slower because it is a
notebook having 1.8GHz core speed and a total of 1 MB
L2 cache, while the machine with the Intel processor is
a server having 2.5GHz core speed and a total of § MB
L2 cache.

Core 0 Core 1
L2 Cache L2 Cache
(for Core 0) (for Core 1)

System Request Interface

Crossbar Switch

DDR2 Memory
Controller

HyperTransport
Technology

v v

Figure 17: The architecture of AMD Turion 64 X2 mobile technology
processor

Table 1 shows the impact of cache architecture on the
scalability. We see that we can get a speedup of 1.962
with 2 cores in a shared memory platform if we use a
separate cache for each core. This is almost an ideal

result! This result proves that separated caches are more
suitable for multicore machines in order to get a better
scalability. The result also proves the efficiency of GOP-
level partitioning without a start-code scanner.

Shared Cache Separated Cache
1 core 2 cores 1 core 2 cores
Run Time (s) 13.233 7.781 21.438 10.925
Speedup 1.701 1.962

Table 1: Effect of cache architecture on speedup

6. Related work

First GOP-level parallel video decoder was intro-
duced a long time ago in [2]. It is a real-time MPEG-1
decoder consisting of parallel processing 16 nodes hav-
ing distributer and collector components. The task of
the distributer is to cut the video sequence into seg-
ments. An other GOP level parallelization of MPEG-
1 encoder for MIMD multiprocessors was presented by
Shen [9].

We see a real-time parallel MPEG-2 decoder in [3].
Both GOP-level and slice-level approaches are evalu-
ated. This system also has scan and display processes.
Scan process is responsible for reading the encoded
video from the disk and placing encoded GOPs into a
task queue. For GOP approach they observed almost
linear speedup in all cases. The bottleneck of the design
is that, the memory requirement increases with the size
of the GOP, size of the picture and number of parallel
processors used.

Various slice level parallism methods have beeen sug-
gested. Lee introduced a slice level parallel MPEG-2
decoder for HDTV [10]. A manager-worker style par-
allel H.263 decoder was implemented by Lehtoraanta
[11] using 1 manger and 3 worker DSP cores.

A hierarchical parallelization approach for H.264 en-
coder is introduced in [4]. In this paper authors sug-
gest that a GOP-level scheme and a slice-level scheme
might be used together for overcoming the latency prob-
lem. Another hierarchical method was proposed by
Chen [14]. In this study frame level and slice level
parallelism employed together. When the frame level
saturates, slice level parallelization is used for further
partitioning. They declare a 4.5X speedup in a machine
having 8 cores.

Roitzsch [15] suggests modifying the encoder for ob-
taining slices that are equivalent in decoding time, not
in macroblock number. This approach needs encoder



modification, and increases slice number and bit rate to
increase scalability.

A task level decomposition method has been intro-
duced by Gulati [12]. His system both encodes and de-
codes H.264 video sequences in real time by mens of
a control processor and 3 DSPs. Schoffmann [13] also
suggests a pipeline model, but at macroblock level.

Among fine grain methods, 2D-wave approach [5],
and 3D-wave technique [6] declares pretty high scala-
bilities. However, fine-grain approaches depend on a
well designed CABAC accelerator, since entropy de-
coding of a single slice or frame is mostly sequential.

7. Conclusions

We have introduced a GOP level parallelization
method for the H.264 video decoder. Our method re-
vokes the need for a start-code scanner, thus lets all the
processors in the environment contribute to the decod-
ing task. This technique also lets the processors work
without waiting for a new task assignment. So in the
ideal computation environment it has perfect scalabil-
ity.

We have observed a one-to-one linear speedup in par-
allel working machines. This is because the memory
resources does not change when we increase the par-
allel working processor number. So we can observe a
speedup close to ideal.

The speed of memory store operation degrades the
speedup in shared memory platforms. As the parallel
working processors increase, the number of simultane-
ous store operations also increase. This causes a lot of
resource stalls due to fullness of the store buffer. We
saw a maximum speedup of 2.516 when working with 6
processors, and the speedup get close to saturation after
4 processors.

We saw that memory load-store operations are very
expensive, and they should be carefully utilized. When
we replaced the calloc function with textitmalloc, both
of which are doing memory space allocation but calloc
is also doing initialization of allocated memory, we get
a run-time decrease from 6.105 sec to 2.881 sec, and
maximum parallel processing speedup increased from
2.167 to 2.516.

The data-structure initializations gets very expansive
when we deal with big amount of data like in video en-
coding and decoding. So a special hardware and addi-
tional instruction may be designed to make these initial-
izations less time-consuming.

Finally, we saw the effect of multicore cache archi-
tecture on scalability. The speedup changes from 1.701

to 1.962 for 2 cores when we use separated L2 caches in
state of shared ones. An almost ideal speedup of 1.962
with 2 cores shows the efficiency of GOP level paral-
lelization without a start-code scanner.
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